
How do you find the integral of $\left( {{e}^{x}} \right)\left( \cos x \right)dx$ ?
Answer
545.4k+ views
Hint: The given equation is an integral equation. We need to expand the equation. Now we must solve the real parts of the equation. After solving the real part, the integral must be evaluated by using u-substitution. Now use Euler’s identity and take out the real part from the resultant equation.
Complete step-by-step solution:
Here $\left( {{e}^{x}} \right)\left( \cos x \right)dx$ Can be solved by the complexifying integral method.
Here in the above, the $\cos x$ is the real part of ${{e}^{ix}}$.
By the Euler’s rule identity that is ${{e}^{i\theta }}=\cos \left( \theta \right)+i\sin \left( \theta \right)$.
Now we can rewrite the integral as:
$\int{{{e}^{x}}\cos \left( x \right)dx=\int{{{e}^{x}}.\operatorname{Re}\left( {{e}^{ix}} \right)dx=}}$
Here the given equation is complex. In this type of equation ${{e}^{x}}$ is a real factor.
Real factor outside or inside the real part functions doesn’t vary the total value of the equation.
So now we can write a real part function and the integral part inside it.
Now the equation changes as:
$\begin{align}
& \Rightarrow \operatorname{Re}\left( \int{{{e}^{x}}{{e}^{^{ix}}}dx} \right) \\
& \Rightarrow \operatorname{Re}\left( \int{{{e}^{x+ix}}dx} \right) \\
& \Rightarrow \operatorname{Re}\left( \int{{{e}^{\left( i+1 \right)x}}} \right)dx \\
\end{align}$
By using u-substitution we can evaluate the integral:
$\Rightarrow \operatorname{Re}\left( \dfrac{{{e}^{\left( i+1 \right)x}}}{i+1}+c \right)$
Now let’s take the common exponent out of the equation.
$\Rightarrow \operatorname{Re}\left( \dfrac{{{e}^{x}}{{e}^{ix}}}{i+1} \right)+c$
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{{{e}^{ix}}}{i+1} \right)+c$
To expand the above equation we can use Euler’s rule identity.
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{i-1}{\left( i+1 \right)\left( i-1 \right)}\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
Now let’s calculate the denominator.
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{i-1}{-1-1}\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{i-1}{-2}\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \left( \dfrac{i}{-2}-\dfrac{1}{-2} \right)\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
Now we should multiply both the terms inside the bracket.
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( -\dfrac{i}{2}\cos \left( x \right)+\dfrac{1}{2}\sin \left( x \right)+\dfrac{1}{2}\cos \left( x \right)+\dfrac{i}{2}\sin \left( x \right) \right)+c$
Now we can separate the real parts easily.
$\Rightarrow {{e}^{x}}\left( \dfrac{1}{2}\sin \left( x \right)+\dfrac{1}{2}\cos (x) \right)+c$
$\Rightarrow \dfrac{{{e}^{x}}}{2}\left( \sin \left( x \right)+\cos \left( x \right) \right)+c$
Hence the integral of $\left( {{e}^{x}} \right)\left( \cos x \right)dx$ is $\dfrac{{{e}^{x}}}{2}\left( \sin \left( x \right)+\cos \left( x \right) \right)+c$
Note: Euler’s formulae are used for integrated equations. Leonhard Euler is the mathematics scientist who evolved the Euler’s formula. This Euler’s formula is used for the complex numbers.
Integral equation which has trigonometric functions can be evaluated by using Euler's formula.
The integrand can be simplified by using the half-angle formula.
Complete step-by-step solution:
Here $\left( {{e}^{x}} \right)\left( \cos x \right)dx$ Can be solved by the complexifying integral method.
Here in the above, the $\cos x$ is the real part of ${{e}^{ix}}$.
By the Euler’s rule identity that is ${{e}^{i\theta }}=\cos \left( \theta \right)+i\sin \left( \theta \right)$.
Now we can rewrite the integral as:
$\int{{{e}^{x}}\cos \left( x \right)dx=\int{{{e}^{x}}.\operatorname{Re}\left( {{e}^{ix}} \right)dx=}}$
Here the given equation is complex. In this type of equation ${{e}^{x}}$ is a real factor.
Real factor outside or inside the real part functions doesn’t vary the total value of the equation.
So now we can write a real part function and the integral part inside it.
Now the equation changes as:
$\begin{align}
& \Rightarrow \operatorname{Re}\left( \int{{{e}^{x}}{{e}^{^{ix}}}dx} \right) \\
& \Rightarrow \operatorname{Re}\left( \int{{{e}^{x+ix}}dx} \right) \\
& \Rightarrow \operatorname{Re}\left( \int{{{e}^{\left( i+1 \right)x}}} \right)dx \\
\end{align}$
By using u-substitution we can evaluate the integral:
$\Rightarrow \operatorname{Re}\left( \dfrac{{{e}^{\left( i+1 \right)x}}}{i+1}+c \right)$
Now let’s take the common exponent out of the equation.
$\Rightarrow \operatorname{Re}\left( \dfrac{{{e}^{x}}{{e}^{ix}}}{i+1} \right)+c$
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{{{e}^{ix}}}{i+1} \right)+c$
To expand the above equation we can use Euler’s rule identity.
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{i-1}{\left( i+1 \right)\left( i-1 \right)}\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
Now let’s calculate the denominator.
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{i-1}{-1-1}\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \dfrac{i-1}{-2}\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( \left( \dfrac{i}{-2}-\dfrac{1}{-2} \right)\left( \cos \left( x \right)+i\sin \left( x \right) \right) \right)+c$
Now we should multiply both the terms inside the bracket.
$\Rightarrow {{e}^{x}}.\operatorname{Re}\left( -\dfrac{i}{2}\cos \left( x \right)+\dfrac{1}{2}\sin \left( x \right)+\dfrac{1}{2}\cos \left( x \right)+\dfrac{i}{2}\sin \left( x \right) \right)+c$
Now we can separate the real parts easily.
$\Rightarrow {{e}^{x}}\left( \dfrac{1}{2}\sin \left( x \right)+\dfrac{1}{2}\cos (x) \right)+c$
$\Rightarrow \dfrac{{{e}^{x}}}{2}\left( \sin \left( x \right)+\cos \left( x \right) \right)+c$
Hence the integral of $\left( {{e}^{x}} \right)\left( \cos x \right)dx$ is $\dfrac{{{e}^{x}}}{2}\left( \sin \left( x \right)+\cos \left( x \right) \right)+c$
Note: Euler’s formulae are used for integrated equations. Leonhard Euler is the mathematics scientist who evolved the Euler’s formula. This Euler’s formula is used for the complex numbers.
Integral equation which has trigonometric functions can be evaluated by using Euler's formula.
The integrand can be simplified by using the half-angle formula.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

