
How do you find the integral of $ \int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx $ ?
Answer
492.6k+ views
Hint: From the given function first declare a variable $ u $ and substitute it into the integral then Differentiate $ u $ and isolate the $ x $ term. This gives you the differential $ du = dx $ . Substitute $ du $ for $ dx $ in the integral: Evaluate the integral and Substitute back $ x $ value in the place of $ u $
Complete step-by-step solution:
To integrate the given equation
$ \Rightarrow \int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx $
Consider $ \sqrt x = u $
We can write $ u $ as
$ \Rightarrow u = {\left( x \right)^{\dfrac{1}{2}}} $
Therefore on differentiating $ u $ , we get
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\left( x \right)^{\dfrac{1}{2} - 1}} $
Now solve power value
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\left( x \right)^{ - \dfrac{1}{2}}} $
So therefore we can write the component as
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{2\sqrt x }} $
Now bring $ dx $ to the RHS, we get
$ \Rightarrow du = \dfrac{1}{{2\sqrt x }}dx $
Now substitute $ u $ in the place of $ \sqrt x $
Therefore we get,
$ \Rightarrow du = \dfrac{1}{{2u}}dx $
Now find the value of $ dx $ we get
$ \Rightarrow dx = 2udu $
Substitute this $ u $ and $ dx $ value in the given equation
Therefore we get
$ \Rightarrow \int {\dfrac{1}{{u \times \left( {1 + {u^2}} \right)}}} 2u\,du $
Now cancel out $ u $
$ \Rightarrow 2\int {\dfrac{1}{{1 + {u^2}}}} du $
Substitute the value of $ \int {\dfrac{1}{{1 + {u^2}}}} du $
Then we get
$ \Rightarrow 2\,\arctan \left( u \right) $
Now substitute the value of $ u $
Therefore we get
$ \Rightarrow 2\,\arctan \sqrt x + C $
Hence the integral of $ \int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx $ is $ 2\,\arctan \sqrt x + C $
Note: The following integral is very common in calculus:
$ \Rightarrow \int {\dfrac{1}{{1 + {x^2}}}} dx = \arctan x + C $
A more general form is
$ \Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} dx = \dfrac{1}{a}\arctan \left( {\dfrac{x}{a}} \right) + C $
Proof:
Factor $ {a^2} $ from the denominator:
\[ \Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} dx = \int {\dfrac{1}{{{a^2}\left( {1 + \dfrac{{{x^2}}}{{{a^2}}}} \right)}}dx = } \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + \left( {\dfrac{{{x^2}}}{{{a^2}}}} \right)}}dx} \]
Now we do a $ udu $ substitution, with $ u = \dfrac{x}{a} $ so that $ du = \dfrac{1}{a}dx $
Thus, $ dx = adu $
We make the replacements:
\[ \Rightarrow \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{\left( {1 + \left( {\dfrac{{{x^2}}}{{{a^2}}}} \right)} \right)}}} dx = \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + {u^2}}}} \left( {a\,du} \right)\]
Note that the $ a $ inside the integral comes out to the front, so we have
$ \Rightarrow \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + {u^2}}}} \left( {a\,du} \right) = \dfrac{1}{a}\int {\dfrac{1}{{1 + {u^2}}}} du $
Now we integrate:
\[ \Rightarrow \dfrac{1}{a}\int {\dfrac{1}{{1 + {u^2}}}} du = \dfrac{1}{a}\arctan u = \dfrac{1}{a}\arctan \dfrac{x}{a} + C\]
Complete step-by-step solution:
To integrate the given equation
$ \Rightarrow \int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx $
Consider $ \sqrt x = u $
We can write $ u $ as
$ \Rightarrow u = {\left( x \right)^{\dfrac{1}{2}}} $
Therefore on differentiating $ u $ , we get
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\left( x \right)^{\dfrac{1}{2} - 1}} $
Now solve power value
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\left( x \right)^{ - \dfrac{1}{2}}} $
So therefore we can write the component as
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{2\sqrt x }} $
Now bring $ dx $ to the RHS, we get
$ \Rightarrow du = \dfrac{1}{{2\sqrt x }}dx $
Now substitute $ u $ in the place of $ \sqrt x $
Therefore we get,
$ \Rightarrow du = \dfrac{1}{{2u}}dx $
Now find the value of $ dx $ we get
$ \Rightarrow dx = 2udu $
Substitute this $ u $ and $ dx $ value in the given equation
Therefore we get
$ \Rightarrow \int {\dfrac{1}{{u \times \left( {1 + {u^2}} \right)}}} 2u\,du $
Now cancel out $ u $
$ \Rightarrow 2\int {\dfrac{1}{{1 + {u^2}}}} du $
Substitute the value of $ \int {\dfrac{1}{{1 + {u^2}}}} du $
Then we get
$ \Rightarrow 2\,\arctan \left( u \right) $
Now substitute the value of $ u $
Therefore we get
$ \Rightarrow 2\,\arctan \sqrt x + C $
Hence the integral of $ \int {\dfrac{1}{{\sqrt x \times \left( {1 + x} \right)}}} dx $ is $ 2\,\arctan \sqrt x + C $
Note: The following integral is very common in calculus:
$ \Rightarrow \int {\dfrac{1}{{1 + {x^2}}}} dx = \arctan x + C $
A more general form is
$ \Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} dx = \dfrac{1}{a}\arctan \left( {\dfrac{x}{a}} \right) + C $
Proof:
Factor $ {a^2} $ from the denominator:
\[ \Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} dx = \int {\dfrac{1}{{{a^2}\left( {1 + \dfrac{{{x^2}}}{{{a^2}}}} \right)}}dx = } \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + \left( {\dfrac{{{x^2}}}{{{a^2}}}} \right)}}dx} \]
Now we do a $ udu $ substitution, with $ u = \dfrac{x}{a} $ so that $ du = \dfrac{1}{a}dx $
Thus, $ dx = adu $
We make the replacements:
\[ \Rightarrow \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{\left( {1 + \left( {\dfrac{{{x^2}}}{{{a^2}}}} \right)} \right)}}} dx = \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + {u^2}}}} \left( {a\,du} \right)\]
Note that the $ a $ inside the integral comes out to the front, so we have
$ \Rightarrow \dfrac{1}{{{a^2}}}\int {\dfrac{1}{{1 + {u^2}}}} \left( {a\,du} \right) = \dfrac{1}{a}\int {\dfrac{1}{{1 + {u^2}}}} du $
Now we integrate:
\[ \Rightarrow \dfrac{1}{a}\int {\dfrac{1}{{1 + {u^2}}}} du = \dfrac{1}{a}\arctan u = \dfrac{1}{a}\arctan \dfrac{x}{a} + C\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
