
How do you find the integral of \[f\left( x \right)={{x}^{4}}{{e}^{x}}\] by using integration by parts?
Answer
548.1k+ views
Hint:In the given question, we have been asked to integrate the given expression using partial fraction. Firstly use the partial fraction method to integrate the function by using the by-parts formula i.e. \[\int{f\left( x \right)g'\left( x \right)dx=f\left( x \right)g\left( x \right)-\int{f'\left( x \right)g\left( x \right)dx}}\]. We will continue the process of applying the integration by-parts till we get the final solution.
Complete step by step answer:
We have, \[\int{{{x}^{4}}{{e}^{x}}dx}\]. In order to integrate \[\int{{{x}^{4}}{{e}^{x}}dx}\] using partial fractions, we will first identify two factors in the integrand. Formula of integration by parts as follows;
\[\int{f\left( x \right)g'\left( x \right)dx=f\left( x \right)g\left( x \right)-\int{f'\left( x \right)g\left( x \right)dx}}\]
Thus, integrating the resultant expression, we obtain
Here,
Let \[f\left( x \right)={{x}^{4}}\ then\ f'\left( x \right)=4{{x}^{3}}\]
And \[g'\left( x \right)={{e}^{x}}\ then\ g\left( x \right)={{e}^{x}}\]
Therefore,
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-\int{4{{x}^{3}}{{e}^{x}}dx}\]
Taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4\int{{{x}^{3}}{{e}^{x}}dx}\]
Now similarly,
Integrating further using by-parts; we obtained
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4{{x}^{3}}{{e}^{x}}-4\int{3{{x}^{2}}{{e}^{x}}dx}\]
Again taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12\int{{{x}^{2}}{{e}^{x}}dx}\]
Now similarly,
Integrating further using by-parts; we obtained
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-12\int{2x{{e}^{x}}dx}\]
Again taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24\int{x{{e}^{x}}dx}\]
Now similarly,
Integrating further using by-parts; we obtained
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24x{{e}^{x}}-24\int{1{{e}^{x}}dx}\]
Again taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24x{{e}^{x}}-24\int{{{e}^{x}}dx}\]
As we know that,
\[\int{{{e}^{x}}dx={{e}^{x}}}\]
\[\Rightarrow\int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24x{{e}^{x}}-24{{e}^{x}}+C\]
Taking out the common factor and simplify the above expression, we get
\[\therefore\int{{{x}^{4}}{{e}^{x}}dx}={{e}^{x}}\left( {{x}^{4}}-4x-12{{x}^{2}}-24x-24 \right)+C\]
Hence,the integral of \[f\left( x \right)={{x}^{4}}{{e}^{x}}\] by using integration by parts is ${{e}^{x}}\left( {{x}^{4}}-4x-12{{x}^{2}}-24x-24 \right)+C$.
Note:Students need to remember the concept of integration by using the by-parts method. When doing indefinite integration, always write the +C part after the integration. This +C part indicates the constant part remains after integration and can be understood when you explore it graphically. The finite integration constant gets cancelled out, so we only write it in indefinite integration.
Complete step by step answer:
We have, \[\int{{{x}^{4}}{{e}^{x}}dx}\]. In order to integrate \[\int{{{x}^{4}}{{e}^{x}}dx}\] using partial fractions, we will first identify two factors in the integrand. Formula of integration by parts as follows;
\[\int{f\left( x \right)g'\left( x \right)dx=f\left( x \right)g\left( x \right)-\int{f'\left( x \right)g\left( x \right)dx}}\]
Thus, integrating the resultant expression, we obtain
Here,
Let \[f\left( x \right)={{x}^{4}}\ then\ f'\left( x \right)=4{{x}^{3}}\]
And \[g'\left( x \right)={{e}^{x}}\ then\ g\left( x \right)={{e}^{x}}\]
Therefore,
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-\int{4{{x}^{3}}{{e}^{x}}dx}\]
Taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4\int{{{x}^{3}}{{e}^{x}}dx}\]
Now similarly,
Integrating further using by-parts; we obtained
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4{{x}^{3}}{{e}^{x}}-4\int{3{{x}^{2}}{{e}^{x}}dx}\]
Again taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12\int{{{x}^{2}}{{e}^{x}}dx}\]
Now similarly,
Integrating further using by-parts; we obtained
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-12\int{2x{{e}^{x}}dx}\]
Again taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24\int{x{{e}^{x}}dx}\]
Now similarly,
Integrating further using by-parts; we obtained
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24x{{e}^{x}}-24\int{1{{e}^{x}}dx}\]
Again taking the constant part out of the integration, we have
\[\Rightarrow \int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24x{{e}^{x}}-24\int{{{e}^{x}}dx}\]
As we know that,
\[\int{{{e}^{x}}dx={{e}^{x}}}\]
\[\Rightarrow\int{{{x}^{4}}{{e}^{x}}dx}={{x}^{4}}{{e}^{x}}-4x{{e}^{x}}-12{{x}^{2}}{{e}^{x}}-24x{{e}^{x}}-24{{e}^{x}}+C\]
Taking out the common factor and simplify the above expression, we get
\[\therefore\int{{{x}^{4}}{{e}^{x}}dx}={{e}^{x}}\left( {{x}^{4}}-4x-12{{x}^{2}}-24x-24 \right)+C\]
Hence,the integral of \[f\left( x \right)={{x}^{4}}{{e}^{x}}\] by using integration by parts is ${{e}^{x}}\left( {{x}^{4}}-4x-12{{x}^{2}}-24x-24 \right)+C$.
Note:Students need to remember the concept of integration by using the by-parts method. When doing indefinite integration, always write the +C part after the integration. This +C part indicates the constant part remains after integration and can be understood when you explore it graphically. The finite integration constant gets cancelled out, so we only write it in indefinite integration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

