
How do you find the integral of $ \dfrac{1}{1+{{\sin }^{2}}x} $ ?
Answer
558.3k+ views
Hint: Here in this question, we have to integrate the given trigonometric expression. There are various integration formulae which we will be using here. Apart from that, Pythagoras identities of trigonometry will also be used. We will solve using the substitution method in integration. Some important formulae used are:
$ \begin{align}
& \Rightarrow \int{1dx}=x+C \\
& \Rightarrow \int{{{\sec }^{2}}xdx}=\tan x+C \\
\end{align} $
Complete step by step answer:
Now, let’s solve the question.
We have to apply integration formulae to solve the trigonometric expression.
First, write the expression given in the question and denote it with ‘I’.
$ \Rightarrow I=\int{\dfrac{1}{1+{{\sin }^{2}}x}}dx $
Now, divide numerator and denominator with $ {{\cos }^{2}}x $ , we get:
$ \Rightarrow I=\int{\dfrac{\dfrac{1}{{{\cos }^{2}}x}}{\dfrac{1+{{\sin }^{2}}x}{{{\cos }^{2}}x}}}dx $
As we know some of the trigonometric identities and conversions. Let’s discuss them too.
$ \Rightarrow $ sinx = $ \dfrac{1}{\cos ecx} $ or cosecx = $ \dfrac{1}{\sin x} $
$ \Rightarrow $ cosx = $ \dfrac{1}{\sec x} $ or secx = $ \dfrac{1}{\cos x} $
$ \Rightarrow $ tanx = $ \dfrac{1}{\cot x} $ or cotx = $ \dfrac{1}{\tan x} $
$ \Rightarrow $ tan $ \theta $ = $ \dfrac{\sin \theta }{\cos \theta } $
$ \Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x=1 $
$ \Rightarrow 1+{{\tan }^{2}}x={{\sec }^{2}}x $
$ \Rightarrow 1+{{\cot }^{2}}x=\cos e{{c}^{2}}x $
As we studied in the above formulae,
$ \Rightarrow $ cosx = $ \dfrac{1}{\sec x} $ or secx = $ \dfrac{1}{\cos x} $
$ \Rightarrow $ tan $ \theta $ = $ \dfrac{\sin \theta }{\cos \theta } $
Do all the necessary conversions and simplify:
$ \Rightarrow I=\int{\dfrac{{{\sec }^{2}}x}{{{\sec }^{2}}x+{{\tan }^{2}}x}}dx $
We know that
$ \Rightarrow 1+{{\tan }^{2}}x={{\sec }^{2}}x $
Put this value now:
$ \Rightarrow I=\int{\dfrac{{{\sec }^{2}}x}{\left( 1+{{\tan }^{2}}x \right)+{{\tan }^{2}}x}}dx $
Open the brackets and solve:
$ \Rightarrow I=\int{\dfrac{{{\sec }^{2}}x}{1+2{{\tan }^{2}}x}}dx $
Now we will use substitution method. Substitute tanx = $ \dfrac{1}{\sqrt{2}}\tan \theta $ .
So,
$ \theta ={{\tan }^{-1}}\left( \sqrt{2}\tan x \right).....(i) $
$ \begin{align}
& \Rightarrow \int{\tan xdx=}\dfrac{1}{\sqrt{2}}\int{\tan \theta d\theta } \\
& \Rightarrow {{\sec }^{2}}x=\dfrac{1}{\sqrt{2}}{{\sec }^{2}}\theta d\theta \\
\end{align} $
Now, we have to replace old values with all new values, we will get:
$ \Rightarrow I=\int{\dfrac{\dfrac{1}{\sqrt{2}}{{\sec }^{2}}\theta }{1+2{{\left( \dfrac{1}{\sqrt{2}}\tan \theta \right)}^{2}}}d\theta } $
Next step is to take $ \dfrac{1}{\sqrt{2}} $ and open the brackets:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{{{\sec }^{2}}\theta }{1+2\times \dfrac{1}{2}{{\tan }^{2}}\theta }d\theta } $
On solving further, we will get:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{{{\sec }^{2}}\theta }{1+{{\tan }^{2}}\theta }d\theta } $
We will again use $ 1+{{\tan }^{2}}x={{\sec }^{2}}x $ in our expression.
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{{{\sec }^{2}}\theta }{{{\sec }^{2}}\theta }d\theta } $
Cancel the terms, we will get:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{1d\theta } $
As we know
$ \Rightarrow \int{1dx}=x+C $
So,
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\theta +C $
Put the equation(i) in it:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \sqrt{2}\tan x \right)+C $
So this is the final answer.
Note:
Though it’s too complicated to solve these types of questions, if you are familiar with trigonometric formulae and methods of integration then you will definitely find the solution. After integrating tanx = $ \dfrac{1}{\sqrt{2}}\tan \theta $ don’t forget to change the dx into $ d\theta $ . Otherwise, in the final step, you will not be able to substitute the value of $ \theta $, and marks will also be deducted.
$ \begin{align}
& \Rightarrow \int{1dx}=x+C \\
& \Rightarrow \int{{{\sec }^{2}}xdx}=\tan x+C \\
\end{align} $
Complete step by step answer:
Now, let’s solve the question.
We have to apply integration formulae to solve the trigonometric expression.
First, write the expression given in the question and denote it with ‘I’.
$ \Rightarrow I=\int{\dfrac{1}{1+{{\sin }^{2}}x}}dx $
Now, divide numerator and denominator with $ {{\cos }^{2}}x $ , we get:
$ \Rightarrow I=\int{\dfrac{\dfrac{1}{{{\cos }^{2}}x}}{\dfrac{1+{{\sin }^{2}}x}{{{\cos }^{2}}x}}}dx $
As we know some of the trigonometric identities and conversions. Let’s discuss them too.
$ \Rightarrow $ sinx = $ \dfrac{1}{\cos ecx} $ or cosecx = $ \dfrac{1}{\sin x} $
$ \Rightarrow $ cosx = $ \dfrac{1}{\sec x} $ or secx = $ \dfrac{1}{\cos x} $
$ \Rightarrow $ tanx = $ \dfrac{1}{\cot x} $ or cotx = $ \dfrac{1}{\tan x} $
$ \Rightarrow $ tan $ \theta $ = $ \dfrac{\sin \theta }{\cos \theta } $
$ \Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x=1 $
$ \Rightarrow 1+{{\tan }^{2}}x={{\sec }^{2}}x $
$ \Rightarrow 1+{{\cot }^{2}}x=\cos e{{c}^{2}}x $
As we studied in the above formulae,
$ \Rightarrow $ cosx = $ \dfrac{1}{\sec x} $ or secx = $ \dfrac{1}{\cos x} $
$ \Rightarrow $ tan $ \theta $ = $ \dfrac{\sin \theta }{\cos \theta } $
Do all the necessary conversions and simplify:
$ \Rightarrow I=\int{\dfrac{{{\sec }^{2}}x}{{{\sec }^{2}}x+{{\tan }^{2}}x}}dx $
We know that
$ \Rightarrow 1+{{\tan }^{2}}x={{\sec }^{2}}x $
Put this value now:
$ \Rightarrow I=\int{\dfrac{{{\sec }^{2}}x}{\left( 1+{{\tan }^{2}}x \right)+{{\tan }^{2}}x}}dx $
Open the brackets and solve:
$ \Rightarrow I=\int{\dfrac{{{\sec }^{2}}x}{1+2{{\tan }^{2}}x}}dx $
Now we will use substitution method. Substitute tanx = $ \dfrac{1}{\sqrt{2}}\tan \theta $ .
So,
$ \theta ={{\tan }^{-1}}\left( \sqrt{2}\tan x \right).....(i) $
$ \begin{align}
& \Rightarrow \int{\tan xdx=}\dfrac{1}{\sqrt{2}}\int{\tan \theta d\theta } \\
& \Rightarrow {{\sec }^{2}}x=\dfrac{1}{\sqrt{2}}{{\sec }^{2}}\theta d\theta \\
\end{align} $
Now, we have to replace old values with all new values, we will get:
$ \Rightarrow I=\int{\dfrac{\dfrac{1}{\sqrt{2}}{{\sec }^{2}}\theta }{1+2{{\left( \dfrac{1}{\sqrt{2}}\tan \theta \right)}^{2}}}d\theta } $
Next step is to take $ \dfrac{1}{\sqrt{2}} $ and open the brackets:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{{{\sec }^{2}}\theta }{1+2\times \dfrac{1}{2}{{\tan }^{2}}\theta }d\theta } $
On solving further, we will get:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{{{\sec }^{2}}\theta }{1+{{\tan }^{2}}\theta }d\theta } $
We will again use $ 1+{{\tan }^{2}}x={{\sec }^{2}}x $ in our expression.
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{{{\sec }^{2}}\theta }{{{\sec }^{2}}\theta }d\theta } $
Cancel the terms, we will get:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{1d\theta } $
As we know
$ \Rightarrow \int{1dx}=x+C $
So,
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}\theta +C $
Put the equation(i) in it:
$ \Rightarrow I=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \sqrt{2}\tan x \right)+C $
So this is the final answer.
Note:
Though it’s too complicated to solve these types of questions, if you are familiar with trigonometric formulae and methods of integration then you will definitely find the solution. After integrating tanx = $ \dfrac{1}{\sqrt{2}}\tan \theta $ don’t forget to change the dx into $ d\theta $ . Otherwise, in the final step, you will not be able to substitute the value of $ \theta $, and marks will also be deducted.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

