
Find the integral $\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}}$?
(a) $\tan x-\cot x+c$
(b) $\tan x-x+1$
(c) $\tan x-x$
(d) $\tan x+x$
Answer
519k+ views
Hint: Assume the given integral as ‘I’. Use the trigonometric identity $2\sin x\cos x=\sin 2x$ and simplify the function inside the integral. Now, Use the conversion $\dfrac{1}{{{\sin }^{2}}x}=\cos e{{c}^{2}}x$ and integrate the cosecant function using the formula $\int{\cos e{{c}^{2}}\left( ax+b \right)dx}=-\dfrac{1}{a}\cot \left( ax+b \right)$. Further, simplify the expression by using the formula $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$ and the conversions $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{\cos x}{\sin x}=\cot x$to get the answer.
Complete step by step answer:
Here we have been asked to integrate the function $\dfrac{1}{{{\sin }^{2}}x{{\cos }^{2}}x}$. Let us assume the integral as I so we have,
$\Rightarrow I=\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}}$
We can write the above integral as:
$\Rightarrow I=\int{\dfrac{dx}{{{\left( \sin x\cos x \right)}^{2}}}}$
Using the trigonometric identity $2\sin x\cos x=\sin 2x$ we get,
$\begin{align}
& \Rightarrow I=\int{\dfrac{dx}{{{\left( \dfrac{\sin 2x}{2} \right)}^{2}}}} \\
& \Rightarrow I=\int{\dfrac{4dx}{{{\sin }^{2}}2x}} \\
\end{align}$
Since 4 is a constant so it can be taken out of the integral and using the conversion $\dfrac{1}{{{\sin }^{2}}x}=\cos e{{c}^{2}}x$ we have,
$\Rightarrow I=4\int{\cos e{{c}^{2}}2xdx}$
Now, using the integration formula of the co – secant function given as $\int{\cos e{{c}^{2}}\left( ax+b \right)dx}=-\dfrac{1}{a}\cot \left( ax+b \right)$ where a and b are constants we get,
$\begin{align}
& \Rightarrow I=4\left( -\dfrac{1}{2}\cot 2x \right) \\
& \Rightarrow I=-2\left( \cot 2x \right) \\
\end{align}$
Using the conversion $\cot x=\dfrac{\cos x}{\sin x}$ we get,
$\Rightarrow I=-2\left( \dfrac{\cos 2x}{\sin 2x} \right)$
Further using the trigonometric identity $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$ in the numerator and $2\sin x\cos x=\sin 2x$ in the denominator we get,
$\begin{align}
& \Rightarrow I=-2\left( \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{2\sin x\cos x} \right) \\
& \Rightarrow I=\left( \dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{\sin x\cos x} \right) \\
\end{align}$
Breaking the terms we get,
$\Rightarrow I=\dfrac{{{\sin }^{2}}x}{\sin x\cos x}-\dfrac{{{\cos }^{2}}x}{\sin x\cos x}$
Cancelling the common terms and using the conversions $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{\cos x}{\sin x}=\cot x$ we get,
$\begin{align}
& \Rightarrow I=\dfrac{\sin x}{\cos x}-\dfrac{\cos x}{\sin x} \\
& \Rightarrow I=\tan x-\cot x \\
\end{align}$
Now, since the given integral is an indefinite integral and therefore we need to add a constant of integration (c) in the expression obtained for I. So we get,
$\therefore I=\tan x-\cot x+c$
So, the correct answer is “Option a”.
Note: Remember all the trigonometric identities and the integral and differential formulas of basic functions such as trigonometric function, logarithmic function, inverse trigonometric functions etc. At last, do not forget to add the constant of integration (c) as we are finding indefinite integral and not definite integral. If options are given, you can also find the correct answer by differentiating the functions one by one. The option which will give the function present inside the integral sign will be our answer.
Complete step by step answer:
Here we have been asked to integrate the function $\dfrac{1}{{{\sin }^{2}}x{{\cos }^{2}}x}$. Let us assume the integral as I so we have,
$\Rightarrow I=\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}}$
We can write the above integral as:
$\Rightarrow I=\int{\dfrac{dx}{{{\left( \sin x\cos x \right)}^{2}}}}$
Using the trigonometric identity $2\sin x\cos x=\sin 2x$ we get,
$\begin{align}
& \Rightarrow I=\int{\dfrac{dx}{{{\left( \dfrac{\sin 2x}{2} \right)}^{2}}}} \\
& \Rightarrow I=\int{\dfrac{4dx}{{{\sin }^{2}}2x}} \\
\end{align}$
Since 4 is a constant so it can be taken out of the integral and using the conversion $\dfrac{1}{{{\sin }^{2}}x}=\cos e{{c}^{2}}x$ we have,
$\Rightarrow I=4\int{\cos e{{c}^{2}}2xdx}$
Now, using the integration formula of the co – secant function given as $\int{\cos e{{c}^{2}}\left( ax+b \right)dx}=-\dfrac{1}{a}\cot \left( ax+b \right)$ where a and b are constants we get,
$\begin{align}
& \Rightarrow I=4\left( -\dfrac{1}{2}\cot 2x \right) \\
& \Rightarrow I=-2\left( \cot 2x \right) \\
\end{align}$
Using the conversion $\cot x=\dfrac{\cos x}{\sin x}$ we get,
$\Rightarrow I=-2\left( \dfrac{\cos 2x}{\sin 2x} \right)$
Further using the trigonometric identity $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$ in the numerator and $2\sin x\cos x=\sin 2x$ in the denominator we get,
$\begin{align}
& \Rightarrow I=-2\left( \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{2\sin x\cos x} \right) \\
& \Rightarrow I=\left( \dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{\sin x\cos x} \right) \\
\end{align}$
Breaking the terms we get,
$\Rightarrow I=\dfrac{{{\sin }^{2}}x}{\sin x\cos x}-\dfrac{{{\cos }^{2}}x}{\sin x\cos x}$
Cancelling the common terms and using the conversions $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{\cos x}{\sin x}=\cot x$ we get,
$\begin{align}
& \Rightarrow I=\dfrac{\sin x}{\cos x}-\dfrac{\cos x}{\sin x} \\
& \Rightarrow I=\tan x-\cot x \\
\end{align}$
Now, since the given integral is an indefinite integral and therefore we need to add a constant of integration (c) in the expression obtained for I. So we get,
$\therefore I=\tan x-\cot x+c$
So, the correct answer is “Option a”.
Note: Remember all the trigonometric identities and the integral and differential formulas of basic functions such as trigonometric function, logarithmic function, inverse trigonometric functions etc. At last, do not forget to add the constant of integration (c) as we are finding indefinite integral and not definite integral. If options are given, you can also find the correct answer by differentiating the functions one by one. The option which will give the function present inside the integral sign will be our answer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

