
How do you find the inflection point of a logarithmic function?
Answer
546.6k+ views
Hint: For a function, an inflection point is a point where the curve changes its shape from concave up to concave down. We can find an inflection point by checking whether its slope at a point has the highest value than any other point. That point is called an inflection point.
Complete step by step answer:
As per the given question, we have to find the inflection points of the logarithmic function.
Let the logarithmic function be \[\ln x\].
For finding the inflection point of a logarithmic function, we need to take the derivative of the logarithmic function.
We know that the derivative of \[\ln x\] is \[\dfrac{1}{x}\].
Let \[y=\ln x\].
So, the first derivative which is denoted as \[{y}'\] will be\[{y}'=\dfrac{1}{x}\].
we can decide the inflection points based on the second derivative of the function which is given by \[{y}''=\dfrac{d}{dx}({y}')\].
Here, we only require the power rule \[\dfrac{d}{dx}(a{{x}^{n}})=(na){{x}^{n-1}}\].
So, the second derivative which is denoted as \[{y}''\] is \[{y}''=\dfrac{-1}{{{x}^{2}}}\].
If \[{y}''=0\] then it is the inflection point. Here, \[{y}''=0\] for \[x=\pm \infty \]. This implies \[\ln x\] do not have any inflection point.
This implies that \[\ln x\] is a strictly increasing function.
The graph of \[y=\ln x\] is as shown below:
Therefore, in this way, we can find the inflection point of any logarithmic function.
Note:
In order to solve these types of problems, we must have enough knowledge about inflection points. We need to know the derivation methods to find the derivative of a function. We should avoid calculation mistakes to get the correct solution. While drawing graphs plot the points wisely to avoid any confusion.
Complete step by step answer:
As per the given question, we have to find the inflection points of the logarithmic function.
Let the logarithmic function be \[\ln x\].
For finding the inflection point of a logarithmic function, we need to take the derivative of the logarithmic function.
We know that the derivative of \[\ln x\] is \[\dfrac{1}{x}\].
Let \[y=\ln x\].
So, the first derivative which is denoted as \[{y}'\] will be\[{y}'=\dfrac{1}{x}\].
we can decide the inflection points based on the second derivative of the function which is given by \[{y}''=\dfrac{d}{dx}({y}')\].
Here, we only require the power rule \[\dfrac{d}{dx}(a{{x}^{n}})=(na){{x}^{n-1}}\].
So, the second derivative which is denoted as \[{y}''\] is \[{y}''=\dfrac{-1}{{{x}^{2}}}\].
If \[{y}''=0\] then it is the inflection point. Here, \[{y}''=0\] for \[x=\pm \infty \]. This implies \[\ln x\] do not have any inflection point.
This implies that \[\ln x\] is a strictly increasing function.
The graph of \[y=\ln x\] is as shown below:
Therefore, in this way, we can find the inflection point of any logarithmic function.
Note:
In order to solve these types of problems, we must have enough knowledge about inflection points. We need to know the derivation methods to find the derivative of a function. We should avoid calculation mistakes to get the correct solution. While drawing graphs plot the points wisely to avoid any confusion.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

