
How do you find the inflection point of a logarithmic function?
Answer
560.1k+ views
Hint: For a function, an inflection point is a point where the curve changes its shape from concave up to concave down. We can find an inflection point by checking whether its slope at a point has the highest value than any other point. That point is called an inflection point.
Complete step by step answer:
As per the given question, we have to find the inflection points of the logarithmic function.
Let the logarithmic function be \[\ln x\].
For finding the inflection point of a logarithmic function, we need to take the derivative of the logarithmic function.
We know that the derivative of \[\ln x\] is \[\dfrac{1}{x}\].
Let \[y=\ln x\].
So, the first derivative which is denoted as \[{y}'\] will be\[{y}'=\dfrac{1}{x}\].
we can decide the inflection points based on the second derivative of the function which is given by \[{y}''=\dfrac{d}{dx}({y}')\].
Here, we only require the power rule \[\dfrac{d}{dx}(a{{x}^{n}})=(na){{x}^{n-1}}\].
So, the second derivative which is denoted as \[{y}''\] is \[{y}''=\dfrac{-1}{{{x}^{2}}}\].
If \[{y}''=0\] then it is the inflection point. Here, \[{y}''=0\] for \[x=\pm \infty \]. This implies \[\ln x\] do not have any inflection point.
This implies that \[\ln x\] is a strictly increasing function.
The graph of \[y=\ln x\] is as shown below:
Therefore, in this way, we can find the inflection point of any logarithmic function.
Note:
In order to solve these types of problems, we must have enough knowledge about inflection points. We need to know the derivation methods to find the derivative of a function. We should avoid calculation mistakes to get the correct solution. While drawing graphs plot the points wisely to avoid any confusion.
Complete step by step answer:
As per the given question, we have to find the inflection points of the logarithmic function.
Let the logarithmic function be \[\ln x\].
For finding the inflection point of a logarithmic function, we need to take the derivative of the logarithmic function.
We know that the derivative of \[\ln x\] is \[\dfrac{1}{x}\].
Let \[y=\ln x\].
So, the first derivative which is denoted as \[{y}'\] will be\[{y}'=\dfrac{1}{x}\].
we can decide the inflection points based on the second derivative of the function which is given by \[{y}''=\dfrac{d}{dx}({y}')\].
Here, we only require the power rule \[\dfrac{d}{dx}(a{{x}^{n}})=(na){{x}^{n-1}}\].
So, the second derivative which is denoted as \[{y}''\] is \[{y}''=\dfrac{-1}{{{x}^{2}}}\].
If \[{y}''=0\] then it is the inflection point. Here, \[{y}''=0\] for \[x=\pm \infty \]. This implies \[\ln x\] do not have any inflection point.
This implies that \[\ln x\] is a strictly increasing function.
The graph of \[y=\ln x\] is as shown below:
Therefore, in this way, we can find the inflection point of any logarithmic function.
Note:
In order to solve these types of problems, we must have enough knowledge about inflection points. We need to know the derivation methods to find the derivative of a function. We should avoid calculation mistakes to get the correct solution. While drawing graphs plot the points wisely to avoid any confusion.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

