
How do you find the indefinite integral of \[\int {{r^2} - 2r + \dfrac{1}{r}dr} \]?
Answer
449.4k+ views
Hint: In solving the given question, we have to integrate the given function, first distribute the integration to all terms in the given function, then by using integration formulas such as \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\] and \[\int {\dfrac{1}{x}dx} = \ln x + c\] wherever required, and then further simplification we will get the required result.
Complete step by step solution:
Indefinite integral refers to an integral that does not have any upper and lower limit.
Given function is \[\int {{r^2} - 2r + \dfrac{1}{r}dr} \],
Now distribute the integral to all the terms of the function, we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \int {{r^2}dr - \int {2r} dr + \int {\dfrac{1}{r}} dr} \],
Again rewrite the expression by taking the constant out from the second term we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \int {{r^2}dr - 2\int r dr + \int {\dfrac{1}{r}} dr} \],
Now integrate each part using integration formulas such as , \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]and\[\int {\dfrac{1}{x}dx} = \ln x + c\], we get,
For the first term i.e., \[{r^2}\], \[n = 2\] and \[x = r\], and for the second term i.e.,\[n = 1\] and \[x = r\], now substituting the values in the formulas we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \dfrac{{{r^{2 + 1}}}}{{2 + 1}} - 2\dfrac{{{r^{1 + 1}}}}{{1 + 1}} + \ln \left| r \right|\],
Now simplifying powers and denominators, we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \dfrac{{{r^3}}}{3} - 2\dfrac{{{r^2}}}{2} + \ln \left| r \right|\],
Now further simplification by eliminating the like terms, we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \dfrac{{{r^3}}}{3} - {r^2} + \ln \left| r \right|\],
So, the integral for the given function is \[\dfrac{{{r^3}}}{3} - {r^2} + \ln \left| r \right| + C\].
Final Answer:
\[\therefore \] The integral for the given function \[\int {{r^2} - 2r + \dfrac{1}{r}dr} \] will be equal to \[\dfrac{{{r^3}}}{3} - {r^2} + \ln \left| r \right| + C\].
Note:
An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
\[\int {f\left( x \right)dx} = F\left( x \right) + C\],
Some of the important formulas that we use while solving integration problems are given below:
\[\int {dx = x + c} \],
\[\int {adx = ax + c} \],
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\],
\[\int {\dfrac{1}{x}dx} = \ln x + c\],
\[\int {{e^x}dx = {e^x} + c} \],
\[\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} \],
\[\int {\sin xdx = - \cos x + c} \],
\[\int {\cos xdx = \sin x + c} \],
\[\int {{{\sec }^2}xdx = \tan x + c} \],
\[\int {{{\csc }^2}xdx = - \cot x + C} \],
\[\int {\sec x \tan xdx = \sec x + C} \],
\[\int {\csc x\cot xdx = - \csc x + C} \],
\[\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} \],
\[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} \].
Complete step by step solution:
Indefinite integral refers to an integral that does not have any upper and lower limit.
Given function is \[\int {{r^2} - 2r + \dfrac{1}{r}dr} \],
Now distribute the integral to all the terms of the function, we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \int {{r^2}dr - \int {2r} dr + \int {\dfrac{1}{r}} dr} \],
Again rewrite the expression by taking the constant out from the second term we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \int {{r^2}dr - 2\int r dr + \int {\dfrac{1}{r}} dr} \],
Now integrate each part using integration formulas such as , \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]and\[\int {\dfrac{1}{x}dx} = \ln x + c\], we get,
For the first term i.e., \[{r^2}\], \[n = 2\] and \[x = r\], and for the second term i.e.,\[n = 1\] and \[x = r\], now substituting the values in the formulas we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \dfrac{{{r^{2 + 1}}}}{{2 + 1}} - 2\dfrac{{{r^{1 + 1}}}}{{1 + 1}} + \ln \left| r \right|\],
Now simplifying powers and denominators, we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \dfrac{{{r^3}}}{3} - 2\dfrac{{{r^2}}}{2} + \ln \left| r \right|\],
Now further simplification by eliminating the like terms, we get,
\[ \Rightarrow \int {{r^2} - 2r + \dfrac{1}{r}dr} = \dfrac{{{r^3}}}{3} - {r^2} + \ln \left| r \right|\],
So, the integral for the given function is \[\dfrac{{{r^3}}}{3} - {r^2} + \ln \left| r \right| + C\].
Final Answer:
\[\therefore \] The integral for the given function \[\int {{r^2} - 2r + \dfrac{1}{r}dr} \] will be equal to \[\dfrac{{{r^3}}}{3} - {r^2} + \ln \left| r \right| + C\].
Note:
An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
\[\int {f\left( x \right)dx} = F\left( x \right) + C\],
Some of the important formulas that we use while solving integration problems are given below:
\[\int {dx = x + c} \],
\[\int {adx = ax + c} \],
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\],
\[\int {\dfrac{1}{x}dx} = \ln x + c\],
\[\int {{e^x}dx = {e^x} + c} \],
\[\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} \],
\[\int {\sin xdx = - \cos x + c} \],
\[\int {\cos xdx = \sin x + c} \],
\[\int {{{\sec }^2}xdx = \tan x + c} \],
\[\int {{{\csc }^2}xdx = - \cot x + C} \],
\[\int {\sec x \tan xdx = \sec x + C} \],
\[\int {\csc x\cot xdx = - \csc x + C} \],
\[\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} \],
\[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} \].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
