
How do you find the implied range and domain of $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ ?
Answer
557.7k+ views
Hint: We explain the function $ \arccos \left( x \right) $ . We express the inverse function of cos in the form of $ \arccos \left( x \right)={{\cos }^{-1}}x $ . We find the range and domain for $ \arccos \left( x \right)={{\cos }^{-1}}x $ . From there we replace the values to find the range and domain for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ .
Complete step-by-step answer:
The given expression is the inverse function of trigonometric ratio cos.
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where
$ \cos \alpha =x $ will be $ 2n\pi \pm \alpha ,n\in \mathbb{Z} $ .
But for $ \arccos \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratio cos we have $ 0\le \arccos \left( x \right)\le \pi $ .
Therefore, the range for function $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ 2n\pi \pm \theta ,n\in \mathbb{Z} $ where $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right]=\theta $ .
Eventually the range becomes the whole real space. So, the actual range is $ \left( -\infty ,\infty \right) $ .
Now we try to find the domain for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ .
We know that the principal domain for $ \arccos \left( x \right)={{\cos }^{-1}}x $ is $ \left[ -1,1 \right] $ . This gives $ x\in \left[ -1,1 \right] $ .
Replacing the value for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ , we get $ {{\left( x-1 \right)}^{2}}\in \left[ -1,1 \right] $ .
Now we know that square value is always greater than or equal to 0.
This gives $ {{\left( x-1 \right)}^{2}}\in \left[ 0,1 \right] $ . The simplified form is $ \left( x-1 \right)\in \left[ -1,1 \right] $ .
Now we add 1 to the equation and get $ x\in \left[ 0,2 \right] $ .
Therefore, the domain of $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ \left[ 0,2 \right] $
So, the correct answer is “ Domain is $ \left[ 0,2 \right] $ and Range is $ \left( -\infty ,\infty \right) $ ”.
Note: If we are finding an $ \arccos \left( x \right) $ of a positive value, the answer is between $ 0\le \arccos \left( x \right)\le \dfrac{\pi }{2} $ . If we are finding the $ \arccos \left( x \right) $ of a negative value, the answer is between $ \dfrac{\pi }{2}\le \arccos \left( x \right)\le \pi $ .
Complete step-by-step answer:
The given expression is the inverse function of trigonometric ratio cos.
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where
$ \cos \alpha =x $ will be $ 2n\pi \pm \alpha ,n\in \mathbb{Z} $ .
But for $ \arccos \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratio cos we have $ 0\le \arccos \left( x \right)\le \pi $ .
Therefore, the range for function $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ 2n\pi \pm \theta ,n\in \mathbb{Z} $ where $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right]=\theta $ .
Eventually the range becomes the whole real space. So, the actual range is $ \left( -\infty ,\infty \right) $ .
Now we try to find the domain for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ .
We know that the principal domain for $ \arccos \left( x \right)={{\cos }^{-1}}x $ is $ \left[ -1,1 \right] $ . This gives $ x\in \left[ -1,1 \right] $ .
Replacing the value for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ , we get $ {{\left( x-1 \right)}^{2}}\in \left[ -1,1 \right] $ .
Now we know that square value is always greater than or equal to 0.
This gives $ {{\left( x-1 \right)}^{2}}\in \left[ 0,1 \right] $ . The simplified form is $ \left( x-1 \right)\in \left[ -1,1 \right] $ .
Now we add 1 to the equation and get $ x\in \left[ 0,2 \right] $ .
Therefore, the domain of $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ \left[ 0,2 \right] $
So, the correct answer is “ Domain is $ \left[ 0,2 \right] $ and Range is $ \left( -\infty ,\infty \right) $ ”.
Note: If we are finding an $ \arccos \left( x \right) $ of a positive value, the answer is between $ 0\le \arccos \left( x \right)\le \dfrac{\pi }{2} $ . If we are finding the $ \arccos \left( x \right) $ of a negative value, the answer is between $ \dfrac{\pi }{2}\le \arccos \left( x \right)\le \pi $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

