
How do you find the implied range and domain of $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ ?
Answer
540.6k+ views
Hint: We explain the function $ \arccos \left( x \right) $ . We express the inverse function of cos in the form of $ \arccos \left( x \right)={{\cos }^{-1}}x $ . We find the range and domain for $ \arccos \left( x \right)={{\cos }^{-1}}x $ . From there we replace the values to find the range and domain for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ .
Complete step-by-step answer:
The given expression is the inverse function of trigonometric ratio cos.
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where
$ \cos \alpha =x $ will be $ 2n\pi \pm \alpha ,n\in \mathbb{Z} $ .
But for $ \arccos \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratio cos we have $ 0\le \arccos \left( x \right)\le \pi $ .
Therefore, the range for function $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ 2n\pi \pm \theta ,n\in \mathbb{Z} $ where $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right]=\theta $ .
Eventually the range becomes the whole real space. So, the actual range is $ \left( -\infty ,\infty \right) $ .
Now we try to find the domain for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ .
We know that the principal domain for $ \arccos \left( x \right)={{\cos }^{-1}}x $ is $ \left[ -1,1 \right] $ . This gives $ x\in \left[ -1,1 \right] $ .
Replacing the value for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ , we get $ {{\left( x-1 \right)}^{2}}\in \left[ -1,1 \right] $ .
Now we know that square value is always greater than or equal to 0.
This gives $ {{\left( x-1 \right)}^{2}}\in \left[ 0,1 \right] $ . The simplified form is $ \left( x-1 \right)\in \left[ -1,1 \right] $ .
Now we add 1 to the equation and get $ x\in \left[ 0,2 \right] $ .
Therefore, the domain of $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ \left[ 0,2 \right] $
So, the correct answer is “ Domain is $ \left[ 0,2 \right] $ and Range is $ \left( -\infty ,\infty \right) $ ”.
Note: If we are finding an $ \arccos \left( x \right) $ of a positive value, the answer is between $ 0\le \arccos \left( x \right)\le \dfrac{\pi }{2} $ . If we are finding the $ \arccos \left( x \right) $ of a negative value, the answer is between $ \dfrac{\pi }{2}\le \arccos \left( x \right)\le \pi $ .
Complete step-by-step answer:
The given expression is the inverse function of trigonometric ratio cos.
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where
$ \cos \alpha =x $ will be $ 2n\pi \pm \alpha ,n\in \mathbb{Z} $ .
But for $ \arccos \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratio cos we have $ 0\le \arccos \left( x \right)\le \pi $ .
Therefore, the range for function $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ 2n\pi \pm \theta ,n\in \mathbb{Z} $ where $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right]=\theta $ .
Eventually the range becomes the whole real space. So, the actual range is $ \left( -\infty ,\infty \right) $ .
Now we try to find the domain for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ .
We know that the principal domain for $ \arccos \left( x \right)={{\cos }^{-1}}x $ is $ \left[ -1,1 \right] $ . This gives $ x\in \left[ -1,1 \right] $ .
Replacing the value for $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ , we get $ {{\left( x-1 \right)}^{2}}\in \left[ -1,1 \right] $ .
Now we know that square value is always greater than or equal to 0.
This gives $ {{\left( x-1 \right)}^{2}}\in \left[ 0,1 \right] $ . The simplified form is $ \left( x-1 \right)\in \left[ -1,1 \right] $ .
Now we add 1 to the equation and get $ x\in \left[ 0,2 \right] $ .
Therefore, the domain of $ \arccos \left[ {{\left( x-1 \right)}^{2}} \right] $ is $ \left[ 0,2 \right] $
So, the correct answer is “ Domain is $ \left[ 0,2 \right] $ and Range is $ \left( -\infty ,\infty \right) $ ”.
Note: If we are finding an $ \arccos \left( x \right) $ of a positive value, the answer is between $ 0\le \arccos \left( x \right)\le \dfrac{\pi }{2} $ . If we are finding the $ \arccos \left( x \right) $ of a negative value, the answer is between $ \dfrac{\pi }{2}\le \arccos \left( x \right)\le \pi $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

