
Find the imaginary part of $\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}$ is:
a). $\dfrac{1}{5}$
b). $\dfrac{3}{5}$
c). $\dfrac{4}{5}$
d). None of these
Answer
612.6k+ views
Hint: We will first simplify the given complex number by expanding the numerator and then multiplying and dividing by the complex conjugate of the denominator. Having simplified it, we will compare it with the general form of complex number \[a+bi\] . The value of b is our answer.
Complete step-by-step solution -
Given complex number is $\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}$
Expanding the numerator using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ we get,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{{{i}^{2}}+2\times 1\times i+{{i}^{2}}}{2-i}$
Since ${{i}^{2}}=-1$ ,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{1+2i-1}{\left( 2-i \right)}$ .
Thus, $\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2i}{2-i}$ .
Now, multiplying and dividing by the complex conjugate of 2-I we get,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2i}{2-i}\times \dfrac{2+i}{2+i}................2+i$ is the complex conjugate of 2-i.
Now multiplying and simplifying, we get,
$\begin{align}
& \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{\left( 2i \right)\times \left( 2+i \right)}{\left( 2-i \right)\times \left( 2+i \right)} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{\left( 2i\times 2 \right)+\left( 2i\times i \right)}{\left( 2\times 2 \right)+\left( 2\times i \right)+\left( -i\times 2 \right)+\left( -i\times i \right)} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{4i+2{{i}^{2}}}{4+2i-2i-{{i}^{2}}} \\
\end{align}$
Since ${{i}^{2}}=-1$ , we get.
$\begin{align}
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{4i+2\left( -1 \right)}{4-\left( -1 \right)} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{4i-2}{4+1} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{-2+4i}{5} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{-2}{5}+\dfrac{4i}{5} \\
\end{align}$
Now, finally we have,
$\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{-2}{5}+\dfrac{4i}{5}$
Now, comparing this with the general form of the complex number a+bi, where a is the real part and b is the imaginary part, we have.
$a+bi=\dfrac{-2}{5}+\dfrac{4i}{5}$
Thus, $a=\dfrac{-2}{5}$ and $b=\dfrac{4}{5}$ .
Thus, the imaginary part of the complex number \[\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}\] is $\dfrac{4}{5}$
Therefore, option (c) is correct.
Note: We can also solve this problem by converting the complex number to polar form. Thus, the given number is \[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}\].
Now, $1+i$ has to be converted to polar form, using the formula,
, $a+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }}$ , where,
(i) $\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in I$ quadrant.
(ii) $\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in II$ quadrant.
(iii) $\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in III$ quadrant.
(iv) $\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in IV$ quadrant.
Now, for $1+i$ , a=1 and b=1.
$\therefore \left( a,b \right)\text{ that is }\left( 1,1 \right)\text{ belongs to I quadrant}$
Thus $1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \left| \dfrac{1}{1} \right| \right)$ .
$\Rightarrow 1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}}$ , Since $\theta ={{\tan }^{-1}}\left( 1 \right)$
$\theta =\dfrac{\pi }{4}$
Now, similarly we convert $2-i$ to polar form.
Here, a=2, b=-1
Therefore, $\left( a,b \right)\in IV$ Quadrant
Thus, $2-i=\left( \sqrt{{{2}^{2}}+{{\left( -1 \right)}^{2}}} \right){{e}^{i\theta }}$ , $\theta =-{{\tan }^{-1}}\left( \left| \dfrac{-1}{2} \right| \right)$.
$\Rightarrow 2-i=\left( \sqrt{4+1} \right){{e}^{i\theta }}$ , $\theta =-{{\tan }^{-1}}\left( \dfrac{1}{2} \right)$ .
$\Rightarrow 2-i=\sqrt{5}{{e}^{i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}$
Now, putting these polar forms in place, we get,
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{{{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{2}}}{\sqrt{5}{{e}^{-i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}\]
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}\left( {{e}^{\dfrac{i\pi }{4}\times 2}} \right)}{\sqrt{5}{{e}^{-i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}$ ……………… using ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ .
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2{{e}^{\dfrac{i\pi }{2}}}}{\sqrt{5}{{e}^{-i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}\]
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2{{e}^{\dfrac{i\pi }{2}+i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}{\sqrt{5}}\] ………………………………. Using $\dfrac{{{a}^{m}}}{{{a}^{-n}}}={{a}^{m+n}}$ .
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2{{e}^{i\left( ^{\dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)} \right)}}}{\sqrt{5}}\]
Now, we know, Euler’s formula,
${{e}^{i\theta }}=\cos \theta +i\sin \theta $ , and we also know that
$\cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta $ and $\sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta $ .
Now, putting $\theta $ as \[\dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)\] we get,
$\begin{align}
& {{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}=\cos \left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)+i\sin \left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right) \\
& =-\sin \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)+i\cos \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right) \\
\end{align}$
Now, let \[\alpha ={{\tan }^{-1}}\left( \dfrac{1}{2} \right)\]
Therefore, $\tan \alpha =\left( \dfrac{1}{2} \right)$
Now, $\tan \alpha =\dfrac{\text{opposite side}}{\text{Adjacent side}}$ .
Thus, opposite side = 1 and adjacent side = 2.
Therefore, hypotenuse $=\sqrt{{{\left( opposite\text{ side} \right)}^{2}}+{{\left( \text{Adjacent side} \right)}^{2}}}$
\[\begin{align}
& hypotenuse=\sqrt{{{1}^{2}}+{{2}^{2}}} \\
& hypotenuse=\sqrt{1+4} \\
& hypotenuse=\sqrt{5} \\
\end{align}\]
Thus, $\sin \alpha =\dfrac{\text{opposite side}}{hypotenuse}$
$\sin \alpha =\dfrac{1}{\sqrt{5}}$
Applying ${{\sin }^{-1}}$ on both sides, we get,
$\alpha ={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right)$
Similarly $\cos \alpha =\dfrac{\text{Adjacent side}}{hypotenuse}$
Which is $\cos \alpha =\dfrac{2}{\sqrt{5}}$
Applying ${{\cos }^{-1}}$ on both sides,
$\alpha ={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right)$
Thus, ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right)$
And ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right)$ .
Thus in the Euler’s formula,
$\begin{align}
& {{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}=-\sin \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)+i\cos \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right) \\
& =-\sin \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right) \right)+i\cos \left( {{\cos }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right) \right) \\
\end{align}$
Now, sin and ${{\sin }^{-1}}$ cancel out each other. Similarly cos and ${{\cos }^{-1}}$ cancel out of each other.
Thus,
${{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}=-\dfrac{1}{\sqrt{5}}+\dfrac{i2}{\sqrt{5}}$
Thus,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2}{\sqrt{5}}{{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}$ .
$\Rightarrow \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2}{\sqrt{5}}\left( \dfrac{-1}{\sqrt{5}}+\dfrac{2}{\sqrt{5}}i \right)$
\[\begin{align}
& \Rightarrow \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{-2}{{{\left( \sqrt{5} \right)}^{2}}}+\dfrac{2\times 2}{{{\left( \sqrt{5} \right)}^{2}}}i \\
& \Rightarrow \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{-2}{5}+\dfrac{4i}{5} \\
\end{align}\]
Thus, the complex number has $\left( \dfrac{4}{5} \right)$ as the imaginary part.
Complete step-by-step solution -
Given complex number is $\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}$
Expanding the numerator using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ we get,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{{{i}^{2}}+2\times 1\times i+{{i}^{2}}}{2-i}$
Since ${{i}^{2}}=-1$ ,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{1+2i-1}{\left( 2-i \right)}$ .
Thus, $\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2i}{2-i}$ .
Now, multiplying and dividing by the complex conjugate of 2-I we get,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2i}{2-i}\times \dfrac{2+i}{2+i}................2+i$ is the complex conjugate of 2-i.
Now multiplying and simplifying, we get,
$\begin{align}
& \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{\left( 2i \right)\times \left( 2+i \right)}{\left( 2-i \right)\times \left( 2+i \right)} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{\left( 2i\times 2 \right)+\left( 2i\times i \right)}{\left( 2\times 2 \right)+\left( 2\times i \right)+\left( -i\times 2 \right)+\left( -i\times i \right)} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{4i+2{{i}^{2}}}{4+2i-2i-{{i}^{2}}} \\
\end{align}$
Since ${{i}^{2}}=-1$ , we get.
$\begin{align}
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{4i+2\left( -1 \right)}{4-\left( -1 \right)} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{4i-2}{4+1} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{-2+4i}{5} \\
& \dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{-2}{5}+\dfrac{4i}{5} \\
\end{align}$
Now, finally we have,
$\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}=\dfrac{-2}{5}+\dfrac{4i}{5}$
Now, comparing this with the general form of the complex number a+bi, where a is the real part and b is the imaginary part, we have.
$a+bi=\dfrac{-2}{5}+\dfrac{4i}{5}$
Thus, $a=\dfrac{-2}{5}$ and $b=\dfrac{4}{5}$ .
Thus, the imaginary part of the complex number \[\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}\] is $\dfrac{4}{5}$
Therefore, option (c) is correct.
Note: We can also solve this problem by converting the complex number to polar form. Thus, the given number is \[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}\].
Now, $1+i$ has to be converted to polar form, using the formula,
, $a+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }}$ , where,
(i) $\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in I$ quadrant.
(ii) $\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in II$ quadrant.
(iii) $\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in III$ quadrant.
(iv) $\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in IV$ quadrant.
Now, for $1+i$ , a=1 and b=1.
$\therefore \left( a,b \right)\text{ that is }\left( 1,1 \right)\text{ belongs to I quadrant}$
Thus $1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \left| \dfrac{1}{1} \right| \right)$ .
$\Rightarrow 1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}}$ , Since $\theta ={{\tan }^{-1}}\left( 1 \right)$
$\theta =\dfrac{\pi }{4}$
Now, similarly we convert $2-i$ to polar form.
Here, a=2, b=-1
Therefore, $\left( a,b \right)\in IV$ Quadrant
Thus, $2-i=\left( \sqrt{{{2}^{2}}+{{\left( -1 \right)}^{2}}} \right){{e}^{i\theta }}$ , $\theta =-{{\tan }^{-1}}\left( \left| \dfrac{-1}{2} \right| \right)$.
$\Rightarrow 2-i=\left( \sqrt{4+1} \right){{e}^{i\theta }}$ , $\theta =-{{\tan }^{-1}}\left( \dfrac{1}{2} \right)$ .
$\Rightarrow 2-i=\sqrt{5}{{e}^{i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}$
Now, putting these polar forms in place, we get,
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{{{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{2}}}{\sqrt{5}{{e}^{-i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}\]
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}\left( {{e}^{\dfrac{i\pi }{4}\times 2}} \right)}{\sqrt{5}{{e}^{-i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}$ ……………… using ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ .
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2{{e}^{\dfrac{i\pi }{2}}}}{\sqrt{5}{{e}^{-i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}\]
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2{{e}^{\dfrac{i\pi }{2}+i{{\tan }^{-1}}\left( \dfrac{1}{2} \right)}}}{\sqrt{5}}\] ………………………………. Using $\dfrac{{{a}^{m}}}{{{a}^{-n}}}={{a}^{m+n}}$ .
\[\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2{{e}^{i\left( ^{\dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)} \right)}}}{\sqrt{5}}\]
Now, we know, Euler’s formula,
${{e}^{i\theta }}=\cos \theta +i\sin \theta $ , and we also know that
$\cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta $ and $\sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta $ .
Now, putting $\theta $ as \[\dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)\] we get,
$\begin{align}
& {{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}=\cos \left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)+i\sin \left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right) \\
& =-\sin \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)+i\cos \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right) \\
\end{align}$
Now, let \[\alpha ={{\tan }^{-1}}\left( \dfrac{1}{2} \right)\]
Therefore, $\tan \alpha =\left( \dfrac{1}{2} \right)$
Now, $\tan \alpha =\dfrac{\text{opposite side}}{\text{Adjacent side}}$ .
Thus, opposite side = 1 and adjacent side = 2.
Therefore, hypotenuse $=\sqrt{{{\left( opposite\text{ side} \right)}^{2}}+{{\left( \text{Adjacent side} \right)}^{2}}}$
\[\begin{align}
& hypotenuse=\sqrt{{{1}^{2}}+{{2}^{2}}} \\
& hypotenuse=\sqrt{1+4} \\
& hypotenuse=\sqrt{5} \\
\end{align}\]
Thus, $\sin \alpha =\dfrac{\text{opposite side}}{hypotenuse}$
$\sin \alpha =\dfrac{1}{\sqrt{5}}$
Applying ${{\sin }^{-1}}$ on both sides, we get,
$\alpha ={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right)$
Similarly $\cos \alpha =\dfrac{\text{Adjacent side}}{hypotenuse}$
Which is $\cos \alpha =\dfrac{2}{\sqrt{5}}$
Applying ${{\cos }^{-1}}$ on both sides,
$\alpha ={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right)$
Thus, ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right)$
And ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right)$ .
Thus in the Euler’s formula,
$\begin{align}
& {{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}=-\sin \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)+i\cos \left( {{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right) \\
& =-\sin \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right) \right)+i\cos \left( {{\cos }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right) \right) \\
\end{align}$
Now, sin and ${{\sin }^{-1}}$ cancel out each other. Similarly cos and ${{\cos }^{-1}}$ cancel out of each other.
Thus,
${{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}=-\dfrac{1}{\sqrt{5}}+\dfrac{i2}{\sqrt{5}}$
Thus,
$\dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2}{\sqrt{5}}{{e}^{i\left( \dfrac{\pi }{2}+{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \right)}}$ .
$\Rightarrow \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{2}{\sqrt{5}}\left( \dfrac{-1}{\sqrt{5}}+\dfrac{2}{\sqrt{5}}i \right)$
\[\begin{align}
& \Rightarrow \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{-2}{{{\left( \sqrt{5} \right)}^{2}}}+\dfrac{2\times 2}{{{\left( \sqrt{5} \right)}^{2}}}i \\
& \Rightarrow \dfrac{{{\left( 1+i \right)}^{2}}}{2-i}=\dfrac{-2}{5}+\dfrac{4i}{5} \\
\end{align}\]
Thus, the complex number has $\left( \dfrac{4}{5} \right)$ as the imaginary part.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

