
Find the general solution of the equation- $\sec^22\mathrm x=1-\tan2\mathrm x$
Answer
606k+ views
Hint: The general solution of $\mathrm{tan\mathrm\theta}=\mathrm{tan\mathrm\alpha}$ is given by-
$\mathrm\theta=\mathrm{n\mathrm\pi}+\mathrm\alpha\;\left(\mathrm n=0,\;\pm1,\;\pm2,\;...\right).....\left(1\right)$
Also, the trigonometric properties required are-
$\sec^2\mathrm y-\tan^2\mathrm y=1$
Complete step-by-step answer:
We have to solve the equation for x. First we will convert the whole equation in terms of tan2x-
$\sec^22\mathrm x=1-\tan2\mathrm x\\\mathrm{Using}\;\sec^2\mathrm y-\tan^2\mathrm y=1,\\\sec^2\mathrm y=1+\tan^2\mathrm y....\left(2\right)$
Using equation (2), we can write that-
$1+\tan^22\mathrm x=1-\tan2\mathrm x\\\tan^22\mathrm x+\tan2\mathrm x=0\\\tan2\mathrm x\left(\tan2\mathrm x+1\right)=0\\\tan2\mathrm x=0,\;\tan2\mathrm x=-1\\\tan2\mathrm x=0=\tan0\\\mathrm{Using}\;\mathrm{equation}\;\left(1\right),\\2\mathrm x=\mathrm{n\mathrm\pi}+0\\\mathrm x=\dfrac{\mathrm{n\mathrm\pi}}2$
Also, we know that tan is negative between 90o and 180o, tan(90+45)=tan135o = -1
$\tan2\mathrm x=-1=\tan\dfrac{3\mathrm\pi}4\\2\mathrm x=\mathrm{n\mathrm\pi}+\dfrac{3\mathrm\pi}4\\\mathrm x=\left(4\mathrm n+3\right)\dfrac{\mathrm\pi}8$
So, the general solution is-
$\mathrm x=\dfrac{\mathrm{n\mathrm\pi}}2,\;\left(4\mathrm n+3\right)\dfrac{\mathrm\pi}8,\;\mathrm{where}\;\mathrm n=0,\;\pm1,\;\pm2,\;...$
Note: To solve trigonometric equations, try and convert all the terms in one type of function. Also, try to remember the formula for general solution of all trigonometric functions. Even after getting the solution, substitute the value and check if the solution exists, because there might be an extra root forming while converting the trigonometric functions.
$\mathrm\theta=\mathrm{n\mathrm\pi}+\mathrm\alpha\;\left(\mathrm n=0,\;\pm1,\;\pm2,\;...\right).....\left(1\right)$
Also, the trigonometric properties required are-
$\sec^2\mathrm y-\tan^2\mathrm y=1$
Complete step-by-step answer:
We have to solve the equation for x. First we will convert the whole equation in terms of tan2x-
$\sec^22\mathrm x=1-\tan2\mathrm x\\\mathrm{Using}\;\sec^2\mathrm y-\tan^2\mathrm y=1,\\\sec^2\mathrm y=1+\tan^2\mathrm y....\left(2\right)$
Using equation (2), we can write that-
$1+\tan^22\mathrm x=1-\tan2\mathrm x\\\tan^22\mathrm x+\tan2\mathrm x=0\\\tan2\mathrm x\left(\tan2\mathrm x+1\right)=0\\\tan2\mathrm x=0,\;\tan2\mathrm x=-1\\\tan2\mathrm x=0=\tan0\\\mathrm{Using}\;\mathrm{equation}\;\left(1\right),\\2\mathrm x=\mathrm{n\mathrm\pi}+0\\\mathrm x=\dfrac{\mathrm{n\mathrm\pi}}2$
Also, we know that tan is negative between 90o and 180o, tan(90+45)=tan135o = -1
$\tan2\mathrm x=-1=\tan\dfrac{3\mathrm\pi}4\\2\mathrm x=\mathrm{n\mathrm\pi}+\dfrac{3\mathrm\pi}4\\\mathrm x=\left(4\mathrm n+3\right)\dfrac{\mathrm\pi}8$
So, the general solution is-
$\mathrm x=\dfrac{\mathrm{n\mathrm\pi}}2,\;\left(4\mathrm n+3\right)\dfrac{\mathrm\pi}8,\;\mathrm{where}\;\mathrm n=0,\;\pm1,\;\pm2,\;...$
Note: To solve trigonometric equations, try and convert all the terms in one type of function. Also, try to remember the formula for general solution of all trigonometric functions. Even after getting the solution, substitute the value and check if the solution exists, because there might be an extra root forming while converting the trigonometric functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

