
Find the general solution of $\csc x=-2$.
Answer
615.3k+ views
Hint: First of all, we can write $\csc x=\dfrac{1}{\sin x}$. Now, we can find the principal solution of $\sin x=\dfrac{-1}{2}$. By using the principal solution, we can find the general solution using $\sin x=\sin \alpha $, then $x=n\pi +{{\left( -1 \right)}^{n}}\alpha $.
Complete step-by-step answer:
Here we have to find the general solution of $\csc x=-2$. Let us consider the equation given in the question, $\csc x=-2$. We know that $\csc x=\dfrac{1}{\sin x}$, so we get, $\dfrac{1}{\sin x}=-2$. By cross multiplying the equation, we get, $\sin x=\dfrac{-1}{2}$. We know that \[\sin 30{}^\circ =\dfrac{1}{2}\]. Since $x$ is negative, it will be in the third and fourth quadrants.
Value in the third quadrant $=180{}^\circ +30{}^\circ =210{}^\circ $. Value in the fourth quadrant $=360{}^\circ -30{}^\circ =330{}^\circ $. So, for $\sin x=\dfrac{-1}{2}$, we get,
$\begin{align}
& x=210{}^\circ =210\times \dfrac{\pi }{180}=\dfrac{7\pi }{6} \\
& x=330{}^\circ =330\times \dfrac{\pi }{180}=\dfrac{11\pi }{6} \\
\end{align}$
Now, to find the general solution, let $\sin x=\sin \theta \ldots \ldots \ldots \left( i \right)$
And we know that $\sin x=\dfrac{-1}{2}\ldots \ldots \ldots \left( ii \right)$
From equation (i) and equation (ii), we get,
$\sin \theta =\dfrac{-1}{2}\ldots \ldots \ldots \left( iii \right)$
We have already calculated, $\sin \dfrac{7\pi }{6}=\dfrac{-1}{2}\ldots \ldots \ldots \left( iv \right)$
So, from the equations, (i), (iii) and (iv), we get,
$\begin{align}
& \sin x=\sin \theta =\sin \dfrac{7\pi }{6} \\
& \Rightarrow \sin x=\sin \dfrac{7\pi }{6} \\
\end{align}$
We know that when $\sin x=\sin \theta $, then $x=n\pi +{{\left( -1 \right)}^{n}}\theta $. By using this relation, we get, $x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{7\pi }{6}$, when $n\in N$.
Hence, we get the general solution of $\csc x=-2$ as $x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{7\pi }{6}$.
Note: In these types of questions, instead of remembering all the multiple formulas for each trigonometric ratio, it is better to convert sec, cosec and cot into cos, sin and tan respectively and then solve the question. It is also advised to learn the values of sin, cos, and tan at the standard angles which are, $0{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ $ as we can always find the higher angles with the use of these angles.
Complete step-by-step answer:
Here we have to find the general solution of $\csc x=-2$. Let us consider the equation given in the question, $\csc x=-2$. We know that $\csc x=\dfrac{1}{\sin x}$, so we get, $\dfrac{1}{\sin x}=-2$. By cross multiplying the equation, we get, $\sin x=\dfrac{-1}{2}$. We know that \[\sin 30{}^\circ =\dfrac{1}{2}\]. Since $x$ is negative, it will be in the third and fourth quadrants.
Value in the third quadrant $=180{}^\circ +30{}^\circ =210{}^\circ $. Value in the fourth quadrant $=360{}^\circ -30{}^\circ =330{}^\circ $. So, for $\sin x=\dfrac{-1}{2}$, we get,
$\begin{align}
& x=210{}^\circ =210\times \dfrac{\pi }{180}=\dfrac{7\pi }{6} \\
& x=330{}^\circ =330\times \dfrac{\pi }{180}=\dfrac{11\pi }{6} \\
\end{align}$
Now, to find the general solution, let $\sin x=\sin \theta \ldots \ldots \ldots \left( i \right)$
And we know that $\sin x=\dfrac{-1}{2}\ldots \ldots \ldots \left( ii \right)$
From equation (i) and equation (ii), we get,
$\sin \theta =\dfrac{-1}{2}\ldots \ldots \ldots \left( iii \right)$
We have already calculated, $\sin \dfrac{7\pi }{6}=\dfrac{-1}{2}\ldots \ldots \ldots \left( iv \right)$
So, from the equations, (i), (iii) and (iv), we get,
$\begin{align}
& \sin x=\sin \theta =\sin \dfrac{7\pi }{6} \\
& \Rightarrow \sin x=\sin \dfrac{7\pi }{6} \\
\end{align}$
We know that when $\sin x=\sin \theta $, then $x=n\pi +{{\left( -1 \right)}^{n}}\theta $. By using this relation, we get, $x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{7\pi }{6}$, when $n\in N$.
Hence, we get the general solution of $\csc x=-2$ as $x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{7\pi }{6}$.
Note: In these types of questions, instead of remembering all the multiple formulas for each trigonometric ratio, it is better to convert sec, cosec and cot into cos, sin and tan respectively and then solve the question. It is also advised to learn the values of sin, cos, and tan at the standard angles which are, $0{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ $ as we can always find the higher angles with the use of these angles.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

