
Find the general solution for cscx = -2
Answer
513.6k+ views
Hint: First we will convert csc into sin and then write that for what value of sin of the angle we get $\dfrac{-1}{2}$, and then we will use the general solution of sin to find all the possible solutions, and we can see that there will be infinitely many solutions of x for which it gives sinx = $\dfrac{-1}{2}$.
Complete step-by-step answer:
Let’s covert csc into sin using the formula $\sin x=\dfrac{1}{\csc x}$
Hence, for cscx = -2 we get $\sin x=\dfrac{-1}{2}$ .
Let’s first find the value of angle for which we get $\dfrac{-1}{2}$.
Now we need to find that in which quadrant sin is negative,
We know that sin is negative in ${3}^{rd}$and ${4}^{th}$ quadrant, so $\pi +\dfrac{\pi }{6}$ and $\dfrac{-\pi }{6}$ both are the correct value,
Here, we will take $\dfrac{-\pi }{6}$.
Now we know that $\sin \left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{2}$
Hence, we get $\sin x=\sin \left( \dfrac{-\pi }{6} \right)$
Now we will use the formula for general solution of sin,
Now, if we have $\sin \theta =\sin \alpha $ then the general solution is:
$\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha $
Now using the above formula for $\sin x=\sin \left( \dfrac{-\pi }{6} \right)$ we get,
$x=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{-\pi }{6} \right)$
Here n = integer.
Hence, from this we can see that we will get infinitely many solutions for x as we change the value of n.
Note: The formula for finding the general solution of sin is very important and must be kept in mind. In the above solution the value of $\alpha $ we have taken was $\dfrac{-\pi }{6}$, but one can also take the value of $\alpha $ as $\pi +\dfrac{\pi }{6}$ , as it lies in the ${3}^{rd}$quadrant and gives negative value for sin. And then one can use the same formula for the general solution and replace the value of $\alpha $ with $\pi +\dfrac{\pi }{6}$ to get the answer, which is also correct.
Complete step-by-step answer:
Let’s covert csc into sin using the formula $\sin x=\dfrac{1}{\csc x}$
Hence, for cscx = -2 we get $\sin x=\dfrac{-1}{2}$ .
Let’s first find the value of angle for which we get $\dfrac{-1}{2}$.
Now we need to find that in which quadrant sin is negative,
We know that sin is negative in ${3}^{rd}$and ${4}^{th}$ quadrant, so $\pi +\dfrac{\pi }{6}$ and $\dfrac{-\pi }{6}$ both are the correct value,
Here, we will take $\dfrac{-\pi }{6}$.
Now we know that $\sin \left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{2}$
Hence, we get $\sin x=\sin \left( \dfrac{-\pi }{6} \right)$
Now we will use the formula for general solution of sin,
Now, if we have $\sin \theta =\sin \alpha $ then the general solution is:
$\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha $
Now using the above formula for $\sin x=\sin \left( \dfrac{-\pi }{6} \right)$ we get,
$x=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{-\pi }{6} \right)$
Here n = integer.
Hence, from this we can see that we will get infinitely many solutions for x as we change the value of n.
Note: The formula for finding the general solution of sin is very important and must be kept in mind. In the above solution the value of $\alpha $ we have taken was $\dfrac{-\pi }{6}$, but one can also take the value of $\alpha $ as $\pi +\dfrac{\pi }{6}$ , as it lies in the ${3}^{rd}$quadrant and gives negative value for sin. And then one can use the same formula for the general solution and replace the value of $\alpha $ with $\pi +\dfrac{\pi }{6}$ to get the answer, which is also correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
