
Find the general solution for \[\text{cosecx=1+cotx}\]
Answer
595.5k+ views
Hint: Let us consider \[\text{cosecx=1+cotx}\] as equation (1). We know that \[\text{cosecx} =\dfrac{1}{\sin x}\] and \[\cot x=\dfrac{\cos x}{\sin x}\]. Now we have to substitute \[\text{cosecx} =\dfrac{1}{\sin x}\] and \[\cot x=\dfrac{\cos x}{\sin x}\] in equation (1). Now we have to divide the obtained equations into certain parts. Now for each part we have to calculate the solution separately. Now the union of all the solutions of different parts will give us a general solution of \[\text{cosecx=1+cotx}\].
Complete step-by-step answer:
Let us assume
\[\text{cosecx=1+cotx}.......\text{(1)}\]
We know that \[\text{cosecx}=\dfrac{1}{\sin x}\] and \[\cot x=\dfrac{\cos x}{\sin x}\].
Now we have to substitute \[\text{cosecx}=\dfrac{1}{\sin x}\] and \[\cot x=\dfrac{\cos x}{\sin x}\] in equation (1).
\[\begin{align}
& \Rightarrow \dfrac{1}{\operatorname{sinx}}=1+\dfrac{\cos x}{\sin x} \\
& \Rightarrow \dfrac{1}{\sin x}=\dfrac{\sin x+\cos x}{\sin x} \\
\end{align}\]
By cross multiplication, we get
\[\begin{align}
& \Rightarrow \sin x=\sin x(\sin x+\cos x) \\
& \Rightarrow \sin x(1-(\sin x+\cos x))=0 \\
& \Rightarrow \sin x=0\text{ (or) 1-(sinx+cosx)=0} \\
\end{align}\]
Case 1:
We know that \[\text{sinx=0}\] if \[\text{x=n}\pi \]where n is equal to 0, 1, 2, 3, 4, 5,……..
\[\begin{align}
& \Rightarrow \text{sinx=0} \\
& \Rightarrow \text{x=n}\pi \\
\end{align}\]
According to case 1,
The general solution of \[\text{cosecx=1+cotx}\] is equal to \[\text{x=n}\pi \] where n is equal to 0, 1, 2, 3, 4, 5,………
Case 2:
\[\begin{align}
& \Rightarrow 1-(\sin x+\cos x)=0 \\
& \Rightarrow \sin x+\cos x=1 \\
& \Rightarrow \sin x=1-\cos x \\
\end{align}\]
Now by squaring on both sides, we get
\[\Rightarrow {{\sin }^{2}}x={{(1-\cos x)}^{2}}\]
We know that \[si{{n}^{2}}x+{{\cos }^{2}}x=1\].
\[\Rightarrow \left( 1-{{\cos }^{2}}x \right)={{(1-cosx)}^{2}}\]
We know that \[{{a}^{2}}-{{b}^{2}}=(a+b)(a-b)\].
\[\begin{align}
& \Rightarrow (1+\cos x)(1-\cos x)={{(1-\cos x)}^{2}} \\
& \Rightarrow (1+\cos x)(1-\cos x)-{{(1-\cos x)}^{2}}=0 \\
& \Rightarrow (1-\cos x)(1+\cos x-(1-\cos x))=0 \\
\end{align}\]
Case 2(a):
\[\begin{align}
& \Rightarrow 1-\cos x=0 \\
& \Rightarrow \cos x=1 \\
\end{align}\]
We know that if \[\cos x=1\] then \[x=2n\pi \] where n is equal to 0, 1, 2, 3, 4, 5,……..
\[\Rightarrow x=2n\pi \]
According to case 2(a),
The general solution of \[\text{cosecx=1+cotx}\] is equal to \[x=2n\pi \] where n is equal to 0, 1, 2, 3, 4, 5,………
Case 2(b):
\[\begin{align}
& \Rightarrow 1+\cos x-1+\cos x=0 \\
& \Rightarrow 2\cos x=0 \\
& \Rightarrow \operatorname{cosx}=0 \\
\end{align}\]
We know that if \[\cos x=0\] then \[x=(2n+1)\dfrac{\pi }{2}\] where n is equal to 0, 1, 2, 3, 4, 5,……..
\[\Rightarrow x=(2n+1)\dfrac{\pi }{2}\]
According to case 2(b),
The general solution of \[\text{cosecx=1+cotx}\] is equal to \[x=(2n+1)\dfrac{\pi }{2}\]where n is equal to 0, 1, 2, 3, 4, 5,………
So, from all the cases it is clear that the solution of \[\text{cosecx=1+cotx}\] is \[x=2n\pi ,(2n+1)\dfrac{\pi }{2}\].
Note: If we observe the step \[\sin x=\sin x(\sin x+\cos x)\], here many students will cancel sin x on both sides and write directly \[\sin x+\cos x=1\]. Then the students may miss the solutions obtained from the equation \[\sin x=0\]. This will not give us a general solution in a proper manner. So, students should have a clear view of this concept of finding the general solutions. So, this type of misconception should be avoided.
Complete step-by-step answer:
Let us assume
\[\text{cosecx=1+cotx}.......\text{(1)}\]
We know that \[\text{cosecx}=\dfrac{1}{\sin x}\] and \[\cot x=\dfrac{\cos x}{\sin x}\].
Now we have to substitute \[\text{cosecx}=\dfrac{1}{\sin x}\] and \[\cot x=\dfrac{\cos x}{\sin x}\] in equation (1).
\[\begin{align}
& \Rightarrow \dfrac{1}{\operatorname{sinx}}=1+\dfrac{\cos x}{\sin x} \\
& \Rightarrow \dfrac{1}{\sin x}=\dfrac{\sin x+\cos x}{\sin x} \\
\end{align}\]
By cross multiplication, we get
\[\begin{align}
& \Rightarrow \sin x=\sin x(\sin x+\cos x) \\
& \Rightarrow \sin x(1-(\sin x+\cos x))=0 \\
& \Rightarrow \sin x=0\text{ (or) 1-(sinx+cosx)=0} \\
\end{align}\]
Case 1:
We know that \[\text{sinx=0}\] if \[\text{x=n}\pi \]where n is equal to 0, 1, 2, 3, 4, 5,……..
\[\begin{align}
& \Rightarrow \text{sinx=0} \\
& \Rightarrow \text{x=n}\pi \\
\end{align}\]
According to case 1,
The general solution of \[\text{cosecx=1+cotx}\] is equal to \[\text{x=n}\pi \] where n is equal to 0, 1, 2, 3, 4, 5,………
Case 2:
\[\begin{align}
& \Rightarrow 1-(\sin x+\cos x)=0 \\
& \Rightarrow \sin x+\cos x=1 \\
& \Rightarrow \sin x=1-\cos x \\
\end{align}\]
Now by squaring on both sides, we get
\[\Rightarrow {{\sin }^{2}}x={{(1-\cos x)}^{2}}\]
We know that \[si{{n}^{2}}x+{{\cos }^{2}}x=1\].
\[\Rightarrow \left( 1-{{\cos }^{2}}x \right)={{(1-cosx)}^{2}}\]
We know that \[{{a}^{2}}-{{b}^{2}}=(a+b)(a-b)\].
\[\begin{align}
& \Rightarrow (1+\cos x)(1-\cos x)={{(1-\cos x)}^{2}} \\
& \Rightarrow (1+\cos x)(1-\cos x)-{{(1-\cos x)}^{2}}=0 \\
& \Rightarrow (1-\cos x)(1+\cos x-(1-\cos x))=0 \\
\end{align}\]
Case 2(a):
\[\begin{align}
& \Rightarrow 1-\cos x=0 \\
& \Rightarrow \cos x=1 \\
\end{align}\]
We know that if \[\cos x=1\] then \[x=2n\pi \] where n is equal to 0, 1, 2, 3, 4, 5,……..
\[\Rightarrow x=2n\pi \]
According to case 2(a),
The general solution of \[\text{cosecx=1+cotx}\] is equal to \[x=2n\pi \] where n is equal to 0, 1, 2, 3, 4, 5,………
Case 2(b):
\[\begin{align}
& \Rightarrow 1+\cos x-1+\cos x=0 \\
& \Rightarrow 2\cos x=0 \\
& \Rightarrow \operatorname{cosx}=0 \\
\end{align}\]
We know that if \[\cos x=0\] then \[x=(2n+1)\dfrac{\pi }{2}\] where n is equal to 0, 1, 2, 3, 4, 5,……..
\[\Rightarrow x=(2n+1)\dfrac{\pi }{2}\]
According to case 2(b),
The general solution of \[\text{cosecx=1+cotx}\] is equal to \[x=(2n+1)\dfrac{\pi }{2}\]where n is equal to 0, 1, 2, 3, 4, 5,………
So, from all the cases it is clear that the solution of \[\text{cosecx=1+cotx}\] is \[x=2n\pi ,(2n+1)\dfrac{\pi }{2}\].
Note: If we observe the step \[\sin x=\sin x(\sin x+\cos x)\], here many students will cancel sin x on both sides and write directly \[\sin x+\cos x=1\]. Then the students may miss the solutions obtained from the equation \[\sin x=0\]. This will not give us a general solution in a proper manner. So, students should have a clear view of this concept of finding the general solutions. So, this type of misconception should be avoided.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

