
Find the following product.
$ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) $
Answer
483.9k+ views
Hint: We know that expansion of $ \left( {a - b} \right)\left( {c + d} \right) $ can be obtained by multiplying each term of first expression with each term of second expression. We will use this information to find the required product.
Complete step-by-step answer:
In this problem, we have two mathematical expressions $ {x^3} - {y^3} $ and $ {x^2} + {y^2} $ . We have to find the product of these two expressions. That is, we have to expand $ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) $ . Now expansion of $ \left( {a - b} \right)\left( {c + d} \right) $ is obtained by multiplying each term of first expression $ \left( {a - b} \right) $ with each term of second expression $ \left( {c + d} \right) $ . That is,
$ \left( {a - b} \right)\left( {c + d} \right) = a\left( {c + d} \right) - b\left( {c + d} \right) $
$ \Rightarrow \left( {a - b} \right)\left( {c + d} \right) = ac + ad - bc - bd $
Let us expand $ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) $ in the same manner. So, we can write
$ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) = {x^3}\left( {{x^2} + {y^2}} \right) - {y^3}\left( {{x^2} + {y^2}} \right) $
$ \Rightarrow \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) = \left( {{x^3} \times {x^2}} \right) + \left( {{x^3} \times {y^2}} \right) - \left( {{y^3} \times {x^2}} \right) - \left( {{y^3} \times {y^2}} \right) \cdots \cdots \left( 1 \right) $
We know that $ {a^m} \times {a^n} = {a^{m + n}} $ . This is called the law of exponents. Use this law in the first and last bracket of RHS of the equation $ \left( 1 \right) $ . So, we can write
$ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) = {x^5} + {x^3}{y^2} - {y^3}{x^2} - {y^5} $
Hence, we can say that the product of $ {x^3} - {y^3} $ and $ {x^2} + {y^2} $ is $ {x^5} + {x^3}{y^2} - {y^3}{x^2} - {y^5} $ .
Note: In this type of problems, we have to find the required product by multiplying each term of one expression with each term of another expression. In this problem, one mathematical expression is $ {x^3} - {y^3} $ . Remember that the factorization of $ {x^3} - {y^3} $ is given by $ {x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) $ . Expansion of $ \left( {a + b} \right)\left( {c + d} \right) $ is given by $ ac + ad + bc + bd $ .
Complete step-by-step answer:
In this problem, we have two mathematical expressions $ {x^3} - {y^3} $ and $ {x^2} + {y^2} $ . We have to find the product of these two expressions. That is, we have to expand $ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) $ . Now expansion of $ \left( {a - b} \right)\left( {c + d} \right) $ is obtained by multiplying each term of first expression $ \left( {a - b} \right) $ with each term of second expression $ \left( {c + d} \right) $ . That is,
$ \left( {a - b} \right)\left( {c + d} \right) = a\left( {c + d} \right) - b\left( {c + d} \right) $
$ \Rightarrow \left( {a - b} \right)\left( {c + d} \right) = ac + ad - bc - bd $
Let us expand $ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) $ in the same manner. So, we can write
$ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) = {x^3}\left( {{x^2} + {y^2}} \right) - {y^3}\left( {{x^2} + {y^2}} \right) $
$ \Rightarrow \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) = \left( {{x^3} \times {x^2}} \right) + \left( {{x^3} \times {y^2}} \right) - \left( {{y^3} \times {x^2}} \right) - \left( {{y^3} \times {y^2}} \right) \cdots \cdots \left( 1 \right) $
We know that $ {a^m} \times {a^n} = {a^{m + n}} $ . This is called the law of exponents. Use this law in the first and last bracket of RHS of the equation $ \left( 1 \right) $ . So, we can write
$ \left( {{x^3} - {y^3}} \right) \times \left( {{x^2} + {y^2}} \right) = {x^5} + {x^3}{y^2} - {y^3}{x^2} - {y^5} $
Hence, we can say that the product of $ {x^3} - {y^3} $ and $ {x^2} + {y^2} $ is $ {x^5} + {x^3}{y^2} - {y^3}{x^2} - {y^5} $ .
Note: In this type of problems, we have to find the required product by multiplying each term of one expression with each term of another expression. In this problem, one mathematical expression is $ {x^3} - {y^3} $ . Remember that the factorization of $ {x^3} - {y^3} $ is given by $ {x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) $ . Expansion of $ \left( {a + b} \right)\left( {c + d} \right) $ is given by $ ac + ad + bc + bd $ .
Recently Updated Pages
he place which comes on immediate right of the hundreds class 7 maths CBSE

Granite is found in A Igneous rocks B Sedimentary rocks class 7 social science CBSE

Two numbers are in the ratio 72 If their sum is 54 class 7 maths CBSE

How do you write dfrac120 as a percent class 7 maths CBSE

Simple interest is given by I dfracPTR100 If p Rs900 class 7 maths CBSE

The most important event in the social life of early class 7 social science CBSE

Trending doubts
The singular of lice is louse A Yes B No class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
