
How do you find the first and second derivatives of $f(x) = \dfrac{x}{{{x^2} + 1}}$ using the quotient rule?
Answer
558k+ views
Hint:We will first mention the quotient rule and then mark the functions as required and thus we get the first and second derivatives of the given function.
Complete step-by-step answer:
We are given that we are required to find the first and second derivatives of $f(x) = \dfrac{x}{{{x^2} + 1}}$ using the quotient rule.
Let us now first of all mention the quotient rule:-
Quotient Rule: If we have a function $f(x) = \dfrac{{g(x)}}{{h(x)}}$ where both g (x) and h (x) are differentiable and h (x) is a non – zero function. Then quotient rule states that:-
$ \Rightarrow f'(x) = \dfrac{{h(x).g'(x) - g(x)h'(x)}}{{{{\left[ {h(x)} \right]}^2}}}$
Now, if we take $f(x) = \dfrac{x}{{{x^2} + 1}},g(x) = x$ and $h(x) = {x^2} + 1$, we will get:-
\[ \Rightarrow f'(x) = \dfrac{{\left( {{x^2} + 1} \right)\dfrac{d}{{dx}}\left( x \right) - \left( x \right)\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left[ {{x^2} + 1} \right]}^2}}}\]
We know that:- $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and $\dfrac{d}{{dx}}(c) = 0$. Using these, we get:-
\[ \Rightarrow f'(x) = \dfrac{{\left( {{x^2} + 1} \right) - \left( {2{x^2}} \right)}}{{{{\left[ {{x^2} + 1} \right]}^2}}}\]
Simplifying it, we will then obtain the following expression:-
\[ \Rightarrow f'(x) = \dfrac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}\]
We have put first derivative with us. Now, we will again apply the quotient rule here which states that: If we have a function ${f_1}(x) = \dfrac{{{g_1}(x)}}{{{h_1}(x)}}$, then we have: \[{f_1}'(x) = \dfrac{{{h_1}(x).{g_1}'(x) - {g_1}(x){h_1}'(x)}}{{{{\left[ {{h_1}(x)} \right]}^2}}}\]
We will assume that: ${f_1}(x) = \dfrac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}},{g_1}(x) = 1 - {x^2}$ and ${h_1}(x) = {\left( {{x^2} + 1} \right)^2}$
\[ \Rightarrow {f_1}'(x) = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}\dfrac{d}{{dx}}\left( {1 - {x^2}} \right) - \left( {1 - {x^2}} \right)\dfrac{d}{{dx}}{{\left( {{x^2} + 1} \right)}^2}}}{{{{\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right]}^2}}}\]
We know that:- $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and $\dfrac{d}{{dx}}(c) = 0$. Using these, we get:-
Now, for the function which is left to be differentiated, we will use the chain rule to get the following expression:-
\[ \Rightarrow {f_1}'(x) = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}\dfrac{d}{{dx}}\left( {1 - {x^2}} \right) - \left( {1 - {x^2}} \right) \times 2\left( {{x^2} + 1} \right) \times 2x}}{{{{\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right]}^2}}}\]
Simplifying the numerator and denominator a bit to get the following expression:-
\[ \Rightarrow {f_1}'(x) = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}\left( { - 2x} \right) - 4x\left( {1 - {x^2}} \right)\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Now, we will use the facts that: ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and ${a^2} - {b^2} = (a - b)(a + b)$
\[ \Rightarrow {f_1}'(x) = \dfrac{{\left( {{x^4} + 1 + 2{x^2}} \right)\left( { - 2x} \right) - 4x\left( {{x^4} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Now simplifying it further to get the following expression:-
\[ \Rightarrow {f_1}'(x) = \dfrac{{ - 2{x^5} - 2x - 4{x^3} - 4{x^5} + 4x}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
\[ \Rightarrow {f_1}'(x) = \dfrac{{ - 6{x^5} + 2x - 4{x^3}}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Since, we had ${f_1}(x) = f'(x)$. So, we have:-
\[ \Rightarrow f''(x) = \dfrac{{ - 6{x^5} + 2x - 4{x^3}}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Thus we have the required first and second derivative.
Note:
The students must note that we applied chain rule to ${h_1}(x) = {\left( {{x^2} + 1} \right)^2}$. Let us understand the chain rule first of all, and then we will see how we applied chain rule to the given function.
Chain rule: It states that if we have a function $f(g(x))$, then its derivative is given by:
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)\]
Now, if we take $f(g(x)) = {\left( {{x^2} + 1} \right)^2}$ in which $f(x) = {x^2}$ and $g(x) = {x^2} + 1$, we will get:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right] = 2\left( {{x^2} + 1} \right) \times 2x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right] = 4x\left( {{x^2} + 1} \right)\]
Complete step-by-step answer:
We are given that we are required to find the first and second derivatives of $f(x) = \dfrac{x}{{{x^2} + 1}}$ using the quotient rule.
Let us now first of all mention the quotient rule:-
Quotient Rule: If we have a function $f(x) = \dfrac{{g(x)}}{{h(x)}}$ where both g (x) and h (x) are differentiable and h (x) is a non – zero function. Then quotient rule states that:-
$ \Rightarrow f'(x) = \dfrac{{h(x).g'(x) - g(x)h'(x)}}{{{{\left[ {h(x)} \right]}^2}}}$
Now, if we take $f(x) = \dfrac{x}{{{x^2} + 1}},g(x) = x$ and $h(x) = {x^2} + 1$, we will get:-
\[ \Rightarrow f'(x) = \dfrac{{\left( {{x^2} + 1} \right)\dfrac{d}{{dx}}\left( x \right) - \left( x \right)\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left[ {{x^2} + 1} \right]}^2}}}\]
We know that:- $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and $\dfrac{d}{{dx}}(c) = 0$. Using these, we get:-
\[ \Rightarrow f'(x) = \dfrac{{\left( {{x^2} + 1} \right) - \left( {2{x^2}} \right)}}{{{{\left[ {{x^2} + 1} \right]}^2}}}\]
Simplifying it, we will then obtain the following expression:-
\[ \Rightarrow f'(x) = \dfrac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}\]
We have put first derivative with us. Now, we will again apply the quotient rule here which states that: If we have a function ${f_1}(x) = \dfrac{{{g_1}(x)}}{{{h_1}(x)}}$, then we have: \[{f_1}'(x) = \dfrac{{{h_1}(x).{g_1}'(x) - {g_1}(x){h_1}'(x)}}{{{{\left[ {{h_1}(x)} \right]}^2}}}\]
We will assume that: ${f_1}(x) = \dfrac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}},{g_1}(x) = 1 - {x^2}$ and ${h_1}(x) = {\left( {{x^2} + 1} \right)^2}$
\[ \Rightarrow {f_1}'(x) = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}\dfrac{d}{{dx}}\left( {1 - {x^2}} \right) - \left( {1 - {x^2}} \right)\dfrac{d}{{dx}}{{\left( {{x^2} + 1} \right)}^2}}}{{{{\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right]}^2}}}\]
We know that:- $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and $\dfrac{d}{{dx}}(c) = 0$. Using these, we get:-
Now, for the function which is left to be differentiated, we will use the chain rule to get the following expression:-
\[ \Rightarrow {f_1}'(x) = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}\dfrac{d}{{dx}}\left( {1 - {x^2}} \right) - \left( {1 - {x^2}} \right) \times 2\left( {{x^2} + 1} \right) \times 2x}}{{{{\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right]}^2}}}\]
Simplifying the numerator and denominator a bit to get the following expression:-
\[ \Rightarrow {f_1}'(x) = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}\left( { - 2x} \right) - 4x\left( {1 - {x^2}} \right)\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Now, we will use the facts that: ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and ${a^2} - {b^2} = (a - b)(a + b)$
\[ \Rightarrow {f_1}'(x) = \dfrac{{\left( {{x^4} + 1 + 2{x^2}} \right)\left( { - 2x} \right) - 4x\left( {{x^4} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Now simplifying it further to get the following expression:-
\[ \Rightarrow {f_1}'(x) = \dfrac{{ - 2{x^5} - 2x - 4{x^3} - 4{x^5} + 4x}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
\[ \Rightarrow {f_1}'(x) = \dfrac{{ - 6{x^5} + 2x - 4{x^3}}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Since, we had ${f_1}(x) = f'(x)$. So, we have:-
\[ \Rightarrow f''(x) = \dfrac{{ - 6{x^5} + 2x - 4{x^3}}}{{{{\left( {{x^2} + 1} \right)}^4}}}\]
Thus we have the required first and second derivative.
Note:
The students must note that we applied chain rule to ${h_1}(x) = {\left( {{x^2} + 1} \right)^2}$. Let us understand the chain rule first of all, and then we will see how we applied chain rule to the given function.
Chain rule: It states that if we have a function $f(g(x))$, then its derivative is given by:
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)\]
Now, if we take $f(g(x)) = {\left( {{x^2} + 1} \right)^2}$ in which $f(x) = {x^2}$ and $g(x) = {x^2} + 1$, we will get:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right] = 2\left( {{x^2} + 1} \right) \times 2x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {{x^2} + 1} \right)}^2}} \right] = 4x\left( {{x^2} + 1} \right)\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

