
Find the factors of \[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\] .
Answer
602.7k+ views
Hint: First of all assume \[bc=X\] , \[ca=Y\] , and \[ab=Z\] . Now, our new expression will be \[{{\left( X+Y+Z \right)}^{3}}-{{X}^{3}}-{{Y}^{3}}-{{Z}^{3}}\] . Transform the given equation as \[\left[ {{\left( X+Y+Z \right)}^{3}}-{{X}^{3}} \right]-\left[ \left( {{Y}^{3}}+{{Z}^{3}} \right) \right]\] . Now, use the identities \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)\] and \[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] to simplify the expression \[\left[ {{\left( X+Y+Z \right)}^{3}}-{{X}^{3}} \right]-\left[ \left( {{Y}^{3}}+{{Z}^{3}} \right) \right]\] . Then, use the identity, \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac\] and solve it further. Finally, replace \[bc\] by X, \[ca\] by Y, and \[ab\] by Z. Now, conclude the factors.
Complete step-by-step answer:
According to the question, it is given that we have to factorize,
\[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\] ………………..(1)
Let us assume,
\[bc=X\] …………………(2)
\[ca=Y\] …………………..(3)
\[ab=Z\] …………………..(4)
Using equation (2), equation (3), and equation (4), we can transform equation (1).
Transforming equation (1), we get
\[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\]
\[={{\left( X+Y+Z \right)}^{3}}-{{X}^{3}}-{{Y}^{3}}-{{Z}^{3}}\] ………………(5)
We know the identity, \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)\] ……………………(4)
Replacing a by (X+Y+Z) and b by X in equation (4), we get
\[\left[ {{\left( X+Y+Z \right)}^{3}}-{{X}^{3}} \right]-\left[ \left( {{Y}^{3}}+{{Z}^{3}} \right) \right]\]
\[=\left\{ \left( X+Y+Z \right)-X \right\}\left\{ {{\left( X+Y+Z \right)}^{2}}+{{X}^{2}}+X\left( X+Y+Z \right) \right\}\] ……………….(5)
We also know the identity, \[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] ……………………(6)
Replacing a by Y and b by Z in equation (6), we get
\[\left( {{Y}^{3}}+{{Z}^{3}} \right)\]
\[=\left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right)\] ……………………(7)
Now, arranging equation (5), we get
\[={{\left( X+Y+Z \right)}^{3}}-{{X}^{3}}-{{Y}^{3}}-{{Z}^{3}}\]
\[=\left[ {{\left( X+Y+Z \right)}^{3}}-{{X}^{3}} \right]-\left[ \left( {{Y}^{3}}+{{Z}^{3}} \right) \right]\] ……………………….(8)
Now, using equation (5) and equation (7) in equation (8), we get
\[=\left[ \left\{ \left( X+Y+Z \right)-X \right\}\left\{ {{\left( X+Y+Z \right)}^{2}}+{{X}^{2}}+X\left( X+Y+Z \right) \right\} \right]-\left[ \left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right]\] ……………(9)
We know the identity, \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac\] …………………..(10)
Replacing a by X, b by Y, and c by Z in equation (10), we get
\[{{\left( X+Y+Z \right)}^{2}}=\left( {{X}^{2}}+{{Y}^{2}}+{{Z}^{2}}+2XY+2YZ+2XZ \right)\] ……………(11)
From equation (9) and equation (11), we have
\[\begin{align}
& =\left[ \left\{ \left( X+Y+Z \right)-X \right\}\left\{ {{\left( X+Y+Z \right)}^{2}}+{{X}^{2}}+X\left( X+Y+Z \right) \right\} \right]-\left[ \left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
& =\left[ \left( Y+Z \right)\left\{ {{X}^{2}}+{{Y}^{2}}+{{Z}^{2}}+2XY+2YZ+2XZ+{{X}^{2}}+{{X}^{2}}+XY+XZ \right\} \right]-\left[ \left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
& =\left( Y+Z \right)\left[ {{Y}^{2}}+{{Z}^{2}}+{{X}^{2}}+{{X}^{2}}+{{X}^{2}}+2XY+XY+2XZ+XZ+2YZ \right]-\left( Y+Z \right)\left[ \left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
\end{align}\]
Taking (Y+Z) as common in whole, we get
\[\begin{align}
& =\left( Y+Z \right)\left[ \left( {{Y}^{2}}+{{Z}^{2}}+3{{X}^{2}}+3XY+3XZ+2YZ \right)-\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
& =\left( Y+Z \right)\left[ \left( {{Y}^{2}}+{{Z}^{2}}+3{{X}^{2}}+3XY+3XZ+2YZ-{{Y}^{2}}-{{Z}^{2}}+YZ \right) \right] \\
& =\left( Y+Z \right)\left[ \left( 3{{X}^{2}}+3XY+3XZ+3YZ \right) \right] \\
& =\left( Y+Z \right)\left[ 3X\left( X+Y \right)+3Z\left( X+Y \right) \right] \\
& =\left( Y+Z \right)\left[ \left( 3X+3Z \right)\left( X+Y \right) \right] \\
& =\left( Y+Z \right)3\left( X+Z \right)\left( X+Y \right) \\
\end{align}\]
\[=3\left( Y+Z \right)\left( X+Z \right)\left( X+Y \right)\] ……………………(12)
From equation (2), equation (3), and equation (4), we have \[bc=X\] , \[ca=Y\] , and \[ab=Z\] .
Now, putting the value of X, Y, and Z in the equation (12), we get
\[\begin{align}
& 3\left( Y+Z \right)\left( X+Z \right)\left( X+Y \right) \\
& =3\left( ca+ab \right)\left( bc+ab \right)\left( bc+ca \right) \\
\end{align}\]
Hence, the factors of \[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\] is \[3,\left( ca+ab \right),\left( bc+ab \right),\text{and}\,\left( bc+ca \right)\] .
Note: To solve this question one can think to expand the expression \[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\] using the identity, \[{{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}\left( b+c \right)+3{{b}^{2}}\left( a+c \right)+3{{c}^{2}}\left( a+b \right)+6abc\] . When we use this identity, we are only expanding the expression. But we have to find its factors, so only expanding it will not work here.
Complete step-by-step answer:
According to the question, it is given that we have to factorize,
\[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\] ………………..(1)
Let us assume,
\[bc=X\] …………………(2)
\[ca=Y\] …………………..(3)
\[ab=Z\] …………………..(4)
Using equation (2), equation (3), and equation (4), we can transform equation (1).
Transforming equation (1), we get
\[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\]
\[={{\left( X+Y+Z \right)}^{3}}-{{X}^{3}}-{{Y}^{3}}-{{Z}^{3}}\] ………………(5)
We know the identity, \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)\] ……………………(4)
Replacing a by (X+Y+Z) and b by X in equation (4), we get
\[\left[ {{\left( X+Y+Z \right)}^{3}}-{{X}^{3}} \right]-\left[ \left( {{Y}^{3}}+{{Z}^{3}} \right) \right]\]
\[=\left\{ \left( X+Y+Z \right)-X \right\}\left\{ {{\left( X+Y+Z \right)}^{2}}+{{X}^{2}}+X\left( X+Y+Z \right) \right\}\] ……………….(5)
We also know the identity, \[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] ……………………(6)
Replacing a by Y and b by Z in equation (6), we get
\[\left( {{Y}^{3}}+{{Z}^{3}} \right)\]
\[=\left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right)\] ……………………(7)
Now, arranging equation (5), we get
\[={{\left( X+Y+Z \right)}^{3}}-{{X}^{3}}-{{Y}^{3}}-{{Z}^{3}}\]
\[=\left[ {{\left( X+Y+Z \right)}^{3}}-{{X}^{3}} \right]-\left[ \left( {{Y}^{3}}+{{Z}^{3}} \right) \right]\] ……………………….(8)
Now, using equation (5) and equation (7) in equation (8), we get
\[=\left[ \left\{ \left( X+Y+Z \right)-X \right\}\left\{ {{\left( X+Y+Z \right)}^{2}}+{{X}^{2}}+X\left( X+Y+Z \right) \right\} \right]-\left[ \left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right]\] ……………(9)
We know the identity, \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac\] …………………..(10)
Replacing a by X, b by Y, and c by Z in equation (10), we get
\[{{\left( X+Y+Z \right)}^{2}}=\left( {{X}^{2}}+{{Y}^{2}}+{{Z}^{2}}+2XY+2YZ+2XZ \right)\] ……………(11)
From equation (9) and equation (11), we have
\[\begin{align}
& =\left[ \left\{ \left( X+Y+Z \right)-X \right\}\left\{ {{\left( X+Y+Z \right)}^{2}}+{{X}^{2}}+X\left( X+Y+Z \right) \right\} \right]-\left[ \left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
& =\left[ \left( Y+Z \right)\left\{ {{X}^{2}}+{{Y}^{2}}+{{Z}^{2}}+2XY+2YZ+2XZ+{{X}^{2}}+{{X}^{2}}+XY+XZ \right\} \right]-\left[ \left( Y+Z \right)\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
& =\left( Y+Z \right)\left[ {{Y}^{2}}+{{Z}^{2}}+{{X}^{2}}+{{X}^{2}}+{{X}^{2}}+2XY+XY+2XZ+XZ+2YZ \right]-\left( Y+Z \right)\left[ \left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
\end{align}\]
Taking (Y+Z) as common in whole, we get
\[\begin{align}
& =\left( Y+Z \right)\left[ \left( {{Y}^{2}}+{{Z}^{2}}+3{{X}^{2}}+3XY+3XZ+2YZ \right)-\left( {{Y}^{2}}+{{Z}^{2}}-YZ \right) \right] \\
& =\left( Y+Z \right)\left[ \left( {{Y}^{2}}+{{Z}^{2}}+3{{X}^{2}}+3XY+3XZ+2YZ-{{Y}^{2}}-{{Z}^{2}}+YZ \right) \right] \\
& =\left( Y+Z \right)\left[ \left( 3{{X}^{2}}+3XY+3XZ+3YZ \right) \right] \\
& =\left( Y+Z \right)\left[ 3X\left( X+Y \right)+3Z\left( X+Y \right) \right] \\
& =\left( Y+Z \right)\left[ \left( 3X+3Z \right)\left( X+Y \right) \right] \\
& =\left( Y+Z \right)3\left( X+Z \right)\left( X+Y \right) \\
\end{align}\]
\[=3\left( Y+Z \right)\left( X+Z \right)\left( X+Y \right)\] ……………………(12)
From equation (2), equation (3), and equation (4), we have \[bc=X\] , \[ca=Y\] , and \[ab=Z\] .
Now, putting the value of X, Y, and Z in the equation (12), we get
\[\begin{align}
& 3\left( Y+Z \right)\left( X+Z \right)\left( X+Y \right) \\
& =3\left( ca+ab \right)\left( bc+ab \right)\left( bc+ca \right) \\
\end{align}\]
Hence, the factors of \[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\] is \[3,\left( ca+ab \right),\left( bc+ab \right),\text{and}\,\left( bc+ca \right)\] .
Note: To solve this question one can think to expand the expression \[{{\left( bc+ca+ab \right)}^{3}}-{{b}^{3}}{{c}^{3}}-{{c}^{3}}{{a}^{3}}-{{a}^{3}}{{b}^{3}}\] using the identity, \[{{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}\left( b+c \right)+3{{b}^{2}}\left( a+c \right)+3{{c}^{2}}\left( a+b \right)+6abc\] . When we use this identity, we are only expanding the expression. But we have to find its factors, so only expanding it will not work here.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail


