Answer
Verified
419.4k+ views
Hint: The first rule to form factorization is to take common parts out at the start of the problem to work on the uncommon parts together. The common parts can be both constant and variable. We make a slight change in the sign to find the commons. Using the method, we form the factorization and find the solution.
Complete step-by-step solution
The given function is of the form $y\left( y-z \right)+9\left( z-y \right)$. The basic step of finding factorization is to take the common parts first. It can be both variable and constant.
In the case of $y\left( y-z \right)+9\left( z-y \right)$, we don’t have an exact common part. But after a slight change in the sign we can find the common.
$\begin{align}
& y\left( y-z \right)+9\left( z-y \right) \\
& =y\left( y-z \right)-9\left( y-z \right) \\
\end{align}$
Now we can take \[\left( y-z \right)\] from both parts.
$\begin{align}
& y\left( y-z \right)-9\left( y-z \right) \\
& =\left( y-z \right)\left( y-9 \right) \\
\end{align}$
The rule of factorisation is to form the multiplication form. The equation $y\left( y-z \right)+9\left( z-y \right)$ has been changed into $\left( y-z \right)\left( y-9 \right)$.
The correct option is B.
Note: We could have first simplified the multiplication already present in the problem and then have taken the common. But it would have been unnecessary as at the time of taking commons out the form would have returned to its previous form. So, to make things simple we just started from the given part to make the factorization. We can cross-check the given options to find the errors in them.
In case of $\left( y-z \right)\left( y+9 \right)$, it gives in expansion $\left( y-z \right)\left( y+9 \right)=y\left( y-z \right)+9\left( y-z \right)$ which is not our main equation.
In case of $\left( z-y \right)\left( y+9 \right)$, it gives in expansion $\left( z-y \right)\left( y+9 \right)=y\left( z-y \right)+9\left( z-y \right)$ which is not our main equation.
Complete step-by-step solution
The given function is of the form $y\left( y-z \right)+9\left( z-y \right)$. The basic step of finding factorization is to take the common parts first. It can be both variable and constant.
In the case of $y\left( y-z \right)+9\left( z-y \right)$, we don’t have an exact common part. But after a slight change in the sign we can find the common.
$\begin{align}
& y\left( y-z \right)+9\left( z-y \right) \\
& =y\left( y-z \right)-9\left( y-z \right) \\
\end{align}$
Now we can take \[\left( y-z \right)\] from both parts.
$\begin{align}
& y\left( y-z \right)-9\left( y-z \right) \\
& =\left( y-z \right)\left( y-9 \right) \\
\end{align}$
The rule of factorisation is to form the multiplication form. The equation $y\left( y-z \right)+9\left( z-y \right)$ has been changed into $\left( y-z \right)\left( y-9 \right)$.
The correct option is B.
Note: We could have first simplified the multiplication already present in the problem and then have taken the common. But it would have been unnecessary as at the time of taking commons out the form would have returned to its previous form. So, to make things simple we just started from the given part to make the factorization. We can cross-check the given options to find the errors in them.
In case of $\left( y-z \right)\left( y+9 \right)$, it gives in expansion $\left( y-z \right)\left( y+9 \right)=y\left( y-z \right)+9\left( y-z \right)$ which is not our main equation.
In case of $\left( z-y \right)\left( y+9 \right)$, it gives in expansion $\left( z-y \right)\left( y+9 \right)=y\left( z-y \right)+9\left( z-y \right)$ which is not our main equation.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE