
Find the exponent of 10 in \[{}^{75}{{C}_{25}}\].
Answer
507.9k+ views
Hint: To find the exponent of 10 in \[{}^{75}{{C}_{25}}\], we should learn the expansion of \[{}^{n}{{C}_{r}}\], which is equal to \[\dfrac{n!}{r!\left( n-r \right)!}\]. Also, we should know that, power of some positive prime integer ‘m’ which is \[\le n\], in \[n!\] is \[\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+.....\], where \[\left[ . \right]\] represents the greatest integer number.
Complete step-by-step answer:
We know that \[{}^{75}{{C}_{25}}\] can be expressed using the formula \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], as \[{}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 75-25 \right)!}\], where n = 75 and r = 25.
\[\Rightarrow {}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 50 \right)!}\]
Now, in this question, we have to find the exponent of 10 in \[{}^{75}{{C}_{25}}\], for that we have to find the exponent of 10 in \[75!\], \[25!\] and \[50!\].
As we know, 10 can be represented as \[10=5\times 2\], so the minimum of the exponents of 5 or 2 will be the exponent of 10 in respective numbers.
Now, let us find the exponent of 5 in \[75!\], as we know that power of some positive prime integer ‘m’ which is \[\le n\], in \[n!\] is \[\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+.....\], where \[\left[ . \right]\] represents the greatest integer number.
So exponent of 5 is\[\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{{{5}^{2}}} \right]+\left[ \dfrac{75}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{25} \right]+\left[ \dfrac{75}{125} \right]+.....\]
\[=\left[ 15 \right]+\left[ 3 \right]+\left[ \dfrac{3}{5} \right]+.....\]
\[=15+3+0\]
\[=18\]
Now, let us find the exponent of 2 in \[75!\],
So, exponent of 2 is\[\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{{{2}^{2}}} \right]+\left[ \dfrac{75}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{4} \right]+\left[ \dfrac{75}{8} \right]+\left[ \dfrac{75}{16} \right]+\left[ \dfrac{75}{32} \right]+\left[ \dfrac{75}{64} \right]+.....\]
\[=\left[ 37.5 \right]+\left[ 18.75 \right]+\left[ 9.3 \right]+\left[ 4.6 \right]+\left[ 2.3 \right]+\left[ 1.15 \right]+\left[ 0.57 \right].....\]
\[=37+18+9+4+2+1+0\]
\[=71\]
As the exponent of 5 is smaller than exponent of 2, that is, 18, we can say that exponent of 10 in \[75!\] is 18.
Similarly, we will find the exponent of 10 in \[25!\].
Now, let us find the exponent of 5 in \[25!\],
So, exponent of 5 is\[\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{{{5}^{2}}} \right]+\left[ \dfrac{25}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{25} \right]+\left[ \dfrac{25}{125} \right]+.....\]
\[=\left[ 5 \right]+\left[ 1 \right]+\left[ \dfrac{1}{5} \right]+.....\]
\[=5+1+0\]
\[=6\]
Now, let us find the exponent of 2 in \[25!\],
So, exponent of 2 is\[\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{{{2}^{2}}} \right]+\left[ \dfrac{25}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{4} \right]+\left[ \dfrac{25}{8} \right]+\left[ \dfrac{25}{16} \right]+\left[ \dfrac{25}{32} \right]+......\]
\[=\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=12+6+3+1+0\]
\[=22\]
As the exponent of 5 is smaller than exponent of 2, that is, 6, we can say that exponent of 10 in \[25!\] is 6.
Similarly, we will find the exponent of 10 in \[50!\].
Now, let us find the exponent of 5 in \[50!\],
So, exponent of 5 is\[\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{{{5}^{2}}} \right]+\left[ \dfrac{50}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{25} \right]+\left[ \dfrac{50}{125} \right]+.....\]
\[=\left[ 10 \right]+\left[ 2 \right]+\left[ \dfrac{2}{5} \right]+.....\]
\[=10+2+0\]
\[=12\]
Now, let us find the exponent of 2 in \[50!\],
So, exponent of 2 is\[\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{{{2}^{2}}} \right]+\left[ \dfrac{50}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{4} \right]+\left[ \dfrac{50}{8} \right]+\left[ \dfrac{50}{16} \right]+\left[ \dfrac{50}{32} \right]+\left[ \dfrac{50}{64} \right]+......\]
\[=\left[ 25 \right]+\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=25+12+6+3+1+0\]
\[=47\]
As the exponent of 5 is smaller than the exponent of 2, that is, 12, we can say that exponent of 10 in \[50!\] is 12.
Now, to find the exponent of 10 in \[{}^{75}{{C}_{25}}\] which is equal to \[\dfrac{75!}{25!50!}\], we will put the exponents of respective factorials at their respective places, so we get,
Exponent of 10 in \[{}^{75}{{C}_{25}}\] = \[\dfrac{{{10}^{18}}}{{{10}^{6}}\times {{10}^{12}}}\]
\[=\dfrac{{{10}^{18}}}{{{10}^{18}}}\]
\[={{10}^{0}}\]
Hence, the exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Note: The possible mistake one can make is while finding the exponent of 10 in \[75!\], \[25!\] and \[50!\], that is, one can find an exponent of 10 without finding an exponent of 5 and 2 which will lead to the wrong solution. Also, one can mistake by writing \[{{10}^{0}}\] as 1, which can be confusing. Because \[{{10}^{0}}\] means an exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Complete step-by-step answer:
We know that \[{}^{75}{{C}_{25}}\] can be expressed using the formula \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], as \[{}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 75-25 \right)!}\], where n = 75 and r = 25.
\[\Rightarrow {}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 50 \right)!}\]
Now, in this question, we have to find the exponent of 10 in \[{}^{75}{{C}_{25}}\], for that we have to find the exponent of 10 in \[75!\], \[25!\] and \[50!\].
As we know, 10 can be represented as \[10=5\times 2\], so the minimum of the exponents of 5 or 2 will be the exponent of 10 in respective numbers.
Now, let us find the exponent of 5 in \[75!\], as we know that power of some positive prime integer ‘m’ which is \[\le n\], in \[n!\] is \[\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+.....\], where \[\left[ . \right]\] represents the greatest integer number.
So exponent of 5 is\[\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{{{5}^{2}}} \right]+\left[ \dfrac{75}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{25} \right]+\left[ \dfrac{75}{125} \right]+.....\]
\[=\left[ 15 \right]+\left[ 3 \right]+\left[ \dfrac{3}{5} \right]+.....\]
\[=15+3+0\]
\[=18\]
Now, let us find the exponent of 2 in \[75!\],
So, exponent of 2 is\[\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{{{2}^{2}}} \right]+\left[ \dfrac{75}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{4} \right]+\left[ \dfrac{75}{8} \right]+\left[ \dfrac{75}{16} \right]+\left[ \dfrac{75}{32} \right]+\left[ \dfrac{75}{64} \right]+.....\]
\[=\left[ 37.5 \right]+\left[ 18.75 \right]+\left[ 9.3 \right]+\left[ 4.6 \right]+\left[ 2.3 \right]+\left[ 1.15 \right]+\left[ 0.57 \right].....\]
\[=37+18+9+4+2+1+0\]
\[=71\]
As the exponent of 5 is smaller than exponent of 2, that is, 18, we can say that exponent of 10 in \[75!\] is 18.
Similarly, we will find the exponent of 10 in \[25!\].
Now, let us find the exponent of 5 in \[25!\],
So, exponent of 5 is\[\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{{{5}^{2}}} \right]+\left[ \dfrac{25}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{25} \right]+\left[ \dfrac{25}{125} \right]+.....\]
\[=\left[ 5 \right]+\left[ 1 \right]+\left[ \dfrac{1}{5} \right]+.....\]
\[=5+1+0\]
\[=6\]
Now, let us find the exponent of 2 in \[25!\],
So, exponent of 2 is\[\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{{{2}^{2}}} \right]+\left[ \dfrac{25}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{4} \right]+\left[ \dfrac{25}{8} \right]+\left[ \dfrac{25}{16} \right]+\left[ \dfrac{25}{32} \right]+......\]
\[=\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=12+6+3+1+0\]
\[=22\]
As the exponent of 5 is smaller than exponent of 2, that is, 6, we can say that exponent of 10 in \[25!\] is 6.
Similarly, we will find the exponent of 10 in \[50!\].
Now, let us find the exponent of 5 in \[50!\],
So, exponent of 5 is\[\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{{{5}^{2}}} \right]+\left[ \dfrac{50}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{25} \right]+\left[ \dfrac{50}{125} \right]+.....\]
\[=\left[ 10 \right]+\left[ 2 \right]+\left[ \dfrac{2}{5} \right]+.....\]
\[=10+2+0\]
\[=12\]
Now, let us find the exponent of 2 in \[50!\],
So, exponent of 2 is\[\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{{{2}^{2}}} \right]+\left[ \dfrac{50}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{4} \right]+\left[ \dfrac{50}{8} \right]+\left[ \dfrac{50}{16} \right]+\left[ \dfrac{50}{32} \right]+\left[ \dfrac{50}{64} \right]+......\]
\[=\left[ 25 \right]+\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=25+12+6+3+1+0\]
\[=47\]
As the exponent of 5 is smaller than the exponent of 2, that is, 12, we can say that exponent of 10 in \[50!\] is 12.
Now, to find the exponent of 10 in \[{}^{75}{{C}_{25}}\] which is equal to \[\dfrac{75!}{25!50!}\], we will put the exponents of respective factorials at their respective places, so we get,
Exponent of 10 in \[{}^{75}{{C}_{25}}\] = \[\dfrac{{{10}^{18}}}{{{10}^{6}}\times {{10}^{12}}}\]
\[=\dfrac{{{10}^{18}}}{{{10}^{18}}}\]
\[={{10}^{0}}\]
Hence, the exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Note: The possible mistake one can make is while finding the exponent of 10 in \[75!\], \[25!\] and \[50!\], that is, one can find an exponent of 10 without finding an exponent of 5 and 2 which will lead to the wrong solution. Also, one can mistake by writing \[{{10}^{0}}\] as 1, which can be confusing. Because \[{{10}^{0}}\] means an exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
