
Find the exponent of 10 in \[{}^{75}{{C}_{25}}\].
Answer
590.1k+ views
Hint: To find the exponent of 10 in \[{}^{75}{{C}_{25}}\], we should learn the expansion of \[{}^{n}{{C}_{r}}\], which is equal to \[\dfrac{n!}{r!\left( n-r \right)!}\]. Also, we should know that, power of some positive prime integer ‘m’ which is \[\le n\], in \[n!\] is \[\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+.....\], where \[\left[ . \right]\] represents the greatest integer number.
Complete step-by-step answer:
We know that \[{}^{75}{{C}_{25}}\] can be expressed using the formula \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], as \[{}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 75-25 \right)!}\], where n = 75 and r = 25.
\[\Rightarrow {}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 50 \right)!}\]
Now, in this question, we have to find the exponent of 10 in \[{}^{75}{{C}_{25}}\], for that we have to find the exponent of 10 in \[75!\], \[25!\] and \[50!\].
As we know, 10 can be represented as \[10=5\times 2\], so the minimum of the exponents of 5 or 2 will be the exponent of 10 in respective numbers.
Now, let us find the exponent of 5 in \[75!\], as we know that power of some positive prime integer ‘m’ which is \[\le n\], in \[n!\] is \[\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+.....\], where \[\left[ . \right]\] represents the greatest integer number.
So exponent of 5 is\[\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{{{5}^{2}}} \right]+\left[ \dfrac{75}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{25} \right]+\left[ \dfrac{75}{125} \right]+.....\]
\[=\left[ 15 \right]+\left[ 3 \right]+\left[ \dfrac{3}{5} \right]+.....\]
\[=15+3+0\]
\[=18\]
Now, let us find the exponent of 2 in \[75!\],
So, exponent of 2 is\[\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{{{2}^{2}}} \right]+\left[ \dfrac{75}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{4} \right]+\left[ \dfrac{75}{8} \right]+\left[ \dfrac{75}{16} \right]+\left[ \dfrac{75}{32} \right]+\left[ \dfrac{75}{64} \right]+.....\]
\[=\left[ 37.5 \right]+\left[ 18.75 \right]+\left[ 9.3 \right]+\left[ 4.6 \right]+\left[ 2.3 \right]+\left[ 1.15 \right]+\left[ 0.57 \right].....\]
\[=37+18+9+4+2+1+0\]
\[=71\]
As the exponent of 5 is smaller than exponent of 2, that is, 18, we can say that exponent of 10 in \[75!\] is 18.
Similarly, we will find the exponent of 10 in \[25!\].
Now, let us find the exponent of 5 in \[25!\],
So, exponent of 5 is\[\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{{{5}^{2}}} \right]+\left[ \dfrac{25}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{25} \right]+\left[ \dfrac{25}{125} \right]+.....\]
\[=\left[ 5 \right]+\left[ 1 \right]+\left[ \dfrac{1}{5} \right]+.....\]
\[=5+1+0\]
\[=6\]
Now, let us find the exponent of 2 in \[25!\],
So, exponent of 2 is\[\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{{{2}^{2}}} \right]+\left[ \dfrac{25}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{4} \right]+\left[ \dfrac{25}{8} \right]+\left[ \dfrac{25}{16} \right]+\left[ \dfrac{25}{32} \right]+......\]
\[=\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=12+6+3+1+0\]
\[=22\]
As the exponent of 5 is smaller than exponent of 2, that is, 6, we can say that exponent of 10 in \[25!\] is 6.
Similarly, we will find the exponent of 10 in \[50!\].
Now, let us find the exponent of 5 in \[50!\],
So, exponent of 5 is\[\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{{{5}^{2}}} \right]+\left[ \dfrac{50}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{25} \right]+\left[ \dfrac{50}{125} \right]+.....\]
\[=\left[ 10 \right]+\left[ 2 \right]+\left[ \dfrac{2}{5} \right]+.....\]
\[=10+2+0\]
\[=12\]
Now, let us find the exponent of 2 in \[50!\],
So, exponent of 2 is\[\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{{{2}^{2}}} \right]+\left[ \dfrac{50}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{4} \right]+\left[ \dfrac{50}{8} \right]+\left[ \dfrac{50}{16} \right]+\left[ \dfrac{50}{32} \right]+\left[ \dfrac{50}{64} \right]+......\]
\[=\left[ 25 \right]+\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=25+12+6+3+1+0\]
\[=47\]
As the exponent of 5 is smaller than the exponent of 2, that is, 12, we can say that exponent of 10 in \[50!\] is 12.
Now, to find the exponent of 10 in \[{}^{75}{{C}_{25}}\] which is equal to \[\dfrac{75!}{25!50!}\], we will put the exponents of respective factorials at their respective places, so we get,
Exponent of 10 in \[{}^{75}{{C}_{25}}\] = \[\dfrac{{{10}^{18}}}{{{10}^{6}}\times {{10}^{12}}}\]
\[=\dfrac{{{10}^{18}}}{{{10}^{18}}}\]
\[={{10}^{0}}\]
Hence, the exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Note: The possible mistake one can make is while finding the exponent of 10 in \[75!\], \[25!\] and \[50!\], that is, one can find an exponent of 10 without finding an exponent of 5 and 2 which will lead to the wrong solution. Also, one can mistake by writing \[{{10}^{0}}\] as 1, which can be confusing. Because \[{{10}^{0}}\] means an exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Complete step-by-step answer:
We know that \[{}^{75}{{C}_{25}}\] can be expressed using the formula \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], as \[{}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 75-25 \right)!}\], where n = 75 and r = 25.
\[\Rightarrow {}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 50 \right)!}\]
Now, in this question, we have to find the exponent of 10 in \[{}^{75}{{C}_{25}}\], for that we have to find the exponent of 10 in \[75!\], \[25!\] and \[50!\].
As we know, 10 can be represented as \[10=5\times 2\], so the minimum of the exponents of 5 or 2 will be the exponent of 10 in respective numbers.
Now, let us find the exponent of 5 in \[75!\], as we know that power of some positive prime integer ‘m’ which is \[\le n\], in \[n!\] is \[\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+.....\], where \[\left[ . \right]\] represents the greatest integer number.
So exponent of 5 is\[\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{{{5}^{2}}} \right]+\left[ \dfrac{75}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{25} \right]+\left[ \dfrac{75}{125} \right]+.....\]
\[=\left[ 15 \right]+\left[ 3 \right]+\left[ \dfrac{3}{5} \right]+.....\]
\[=15+3+0\]
\[=18\]
Now, let us find the exponent of 2 in \[75!\],
So, exponent of 2 is\[\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{{{2}^{2}}} \right]+\left[ \dfrac{75}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{4} \right]+\left[ \dfrac{75}{8} \right]+\left[ \dfrac{75}{16} \right]+\left[ \dfrac{75}{32} \right]+\left[ \dfrac{75}{64} \right]+.....\]
\[=\left[ 37.5 \right]+\left[ 18.75 \right]+\left[ 9.3 \right]+\left[ 4.6 \right]+\left[ 2.3 \right]+\left[ 1.15 \right]+\left[ 0.57 \right].....\]
\[=37+18+9+4+2+1+0\]
\[=71\]
As the exponent of 5 is smaller than exponent of 2, that is, 18, we can say that exponent of 10 in \[75!\] is 18.
Similarly, we will find the exponent of 10 in \[25!\].
Now, let us find the exponent of 5 in \[25!\],
So, exponent of 5 is\[\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{{{5}^{2}}} \right]+\left[ \dfrac{25}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{25} \right]+\left[ \dfrac{25}{125} \right]+.....\]
\[=\left[ 5 \right]+\left[ 1 \right]+\left[ \dfrac{1}{5} \right]+.....\]
\[=5+1+0\]
\[=6\]
Now, let us find the exponent of 2 in \[25!\],
So, exponent of 2 is\[\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{{{2}^{2}}} \right]+\left[ \dfrac{25}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{4} \right]+\left[ \dfrac{25}{8} \right]+\left[ \dfrac{25}{16} \right]+\left[ \dfrac{25}{32} \right]+......\]
\[=\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=12+6+3+1+0\]
\[=22\]
As the exponent of 5 is smaller than exponent of 2, that is, 6, we can say that exponent of 10 in \[25!\] is 6.
Similarly, we will find the exponent of 10 in \[50!\].
Now, let us find the exponent of 5 in \[50!\],
So, exponent of 5 is\[\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{{{5}^{2}}} \right]+\left[ \dfrac{50}{{{5}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{25} \right]+\left[ \dfrac{50}{125} \right]+.....\]
\[=\left[ 10 \right]+\left[ 2 \right]+\left[ \dfrac{2}{5} \right]+.....\]
\[=10+2+0\]
\[=12\]
Now, let us find the exponent of 2 in \[50!\],
So, exponent of 2 is\[\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{{{2}^{2}}} \right]+\left[ \dfrac{50}{{{2}^{3}}} \right]+.....\]
\[=\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{4} \right]+\left[ \dfrac{50}{8} \right]+\left[ \dfrac{50}{16} \right]+\left[ \dfrac{50}{32} \right]+\left[ \dfrac{50}{64} \right]+......\]
\[=\left[ 25 \right]+\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......\]
\[=25+12+6+3+1+0\]
\[=47\]
As the exponent of 5 is smaller than the exponent of 2, that is, 12, we can say that exponent of 10 in \[50!\] is 12.
Now, to find the exponent of 10 in \[{}^{75}{{C}_{25}}\] which is equal to \[\dfrac{75!}{25!50!}\], we will put the exponents of respective factorials at their respective places, so we get,
Exponent of 10 in \[{}^{75}{{C}_{25}}\] = \[\dfrac{{{10}^{18}}}{{{10}^{6}}\times {{10}^{12}}}\]
\[=\dfrac{{{10}^{18}}}{{{10}^{18}}}\]
\[={{10}^{0}}\]
Hence, the exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Note: The possible mistake one can make is while finding the exponent of 10 in \[75!\], \[25!\] and \[50!\], that is, one can find an exponent of 10 without finding an exponent of 5 and 2 which will lead to the wrong solution. Also, one can mistake by writing \[{{10}^{0}}\] as 1, which can be confusing. Because \[{{10}^{0}}\] means an exponent of 10 in \[{}^{75}{{C}_{25}}\] is 0.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

