
How do you find the exact values of $\tan \dfrac{{3\pi }}{8}$ using the half-angle formula?
Answer
493.2k+ views
Hint:In the above question, we were asked to find the exact value of $\tan \dfrac{{3\pi }}{8}$ using the half-angle formula. We will use the formula $\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}$ , this is the half-angle formula for $\tan $. We will substitute $\dfrac{\theta }{2}$ with $\dfrac{{3\pi }}{8}$. Substituting the value then we will operate the equation and simplify accordingly to find the required value of our problem. So, let’s see how we solve the problem.
Complete step by step answer:
The half-angle formula for tangent can be written as:
$\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}$
We will use this formula to solve the above problem.
Let us take, $\theta = \dfrac{{3\pi }}{4}$.
Now, substituting this value in the above formula, we get,
$\tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 - \cos \left( {\dfrac{{3\pi }}{4}} \right)}}{{\sin \dfrac{{3\pi }}{4}}}$
We know, value of $\cos \dfrac{{3\pi }}{4}$ is $ - \dfrac{1}{{\sqrt 2 }}$ and $\sin \dfrac{{3\pi }}{4}$ is $\dfrac{1}{{\sqrt 2 }}$.
Now, using these values in the above equation, we get,
So, $\tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}$
$ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}$
Taking LCM in the numerator, we get,
$ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}$
Now, converting the fraction in its simplest form, we get,
$ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{\sqrt 2 + 1}}{1}$
Therefore, the value of $\tan \dfrac{{3\pi }}{8}$ by the half-angle formula is $\sqrt 2 + 1$.
Note: In the above solution, we have used a half-angle formula for the tangent.There is a half-angle formula for $\sin $ and $\cos $ as well. These are,
$\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $ and $\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} $
Also, $\cos \left( {2\theta } \right) = {\cos ^2}\theta - {\sin ^2}\theta = 1 - 2{\sin ^2}\theta = 2{\cos ^2}\theta - 1$, $\sin \left( {2\theta } \right) = 2\sin \theta \cos \theta $ and $\tan \left( {2\theta } \right) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$. The parent formulas for the half angle formulas are the formulas with $2\theta $. In these formulas, substituting $2\theta $ by $\theta $ and $\theta $ by $\dfrac{\theta }{2}$ gives the resulting half angle formulas. All these formulas are very useful and sometimes they are converted according to the problem statement and are used accordingly.
Complete step by step answer:
The half-angle formula for tangent can be written as:
$\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}$
We will use this formula to solve the above problem.
Let us take, $\theta = \dfrac{{3\pi }}{4}$.
Now, substituting this value in the above formula, we get,
$\tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 - \cos \left( {\dfrac{{3\pi }}{4}} \right)}}{{\sin \dfrac{{3\pi }}{4}}}$
We know, value of $\cos \dfrac{{3\pi }}{4}$ is $ - \dfrac{1}{{\sqrt 2 }}$ and $\sin \dfrac{{3\pi }}{4}$ is $\dfrac{1}{{\sqrt 2 }}$.
Now, using these values in the above equation, we get,
So, $\tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}$
$ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}$
Taking LCM in the numerator, we get,
$ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}$
Now, converting the fraction in its simplest form, we get,
$ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{\sqrt 2 + 1}}{1}$
Therefore, the value of $\tan \dfrac{{3\pi }}{8}$ by the half-angle formula is $\sqrt 2 + 1$.
Note: In the above solution, we have used a half-angle formula for the tangent.There is a half-angle formula for $\sin $ and $\cos $ as well. These are,
$\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $ and $\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} $
Also, $\cos \left( {2\theta } \right) = {\cos ^2}\theta - {\sin ^2}\theta = 1 - 2{\sin ^2}\theta = 2{\cos ^2}\theta - 1$, $\sin \left( {2\theta } \right) = 2\sin \theta \cos \theta $ and $\tan \left( {2\theta } \right) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$. The parent formulas for the half angle formulas are the formulas with $2\theta $. In these formulas, substituting $2\theta $ by $\theta $ and $\theta $ by $\dfrac{\theta }{2}$ gives the resulting half angle formulas. All these formulas are very useful and sometimes they are converted according to the problem statement and are used accordingly.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

