
How do you find the exact values of $ \sin {165^0} $ using the half angle formulae ?
Answer
559.2k+ views
Hint: First we will evaluate the right-hand of the equation and then further the left-hand side of the equation. We will use the following formula to evaluate $ \sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} $ and then we will further this expression to $ \sin x $ form and hence evaluate the value of the term.
Complete step-by-step answer:
We will start off by using the formula $ \sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} $ .
Hence, the equation will become,
\[
= \sin 165 \\
\sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \\
\sin \left( {\dfrac{{330}}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos 330}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \cos (360 - 330)}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \cos (30)}}{2}} \;
\]
Now we know that the value of $ \cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} $
So now here, the value will be,
\[
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \cos (30)}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{2 - \sqrt 3 }}{4}} \\
\sin \left( {165} \right) = \pm \dfrac{{\sqrt {2 - \sqrt 3 } }}{2} \;
\]
So, the correct answer is “ $ \pm \dfrac{{\sqrt {2 - \sqrt 3 } }}{2} $ ”.
Note: While choosing the side to solve, always choose the side where you can directly apply the trigonometric identities. Also, remember the trigonometric identities $ {\sin ^2}x + {\cos ^2}x = 1 $ and $ \cos 2x = 2{\cos ^2}x - 1 $ . While opening the brackets make sure you are opening the brackets properly with their respective signs. Also remember that $ \tan x = \,\dfrac{{\sin x}}{{\cos x}} $ .
While applying the double angle identities, first choose the identity according to the terms you have then choose the terms from the expression involving which you are using the double angle identities.
Complete step-by-step answer:
We will start off by using the formula $ \sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} $ .
Hence, the equation will become,
\[
= \sin 165 \\
\sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \\
\sin \left( {\dfrac{{330}}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos 330}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \cos (360 - 330)}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \cos (30)}}{2}} \;
\]
Now we know that the value of $ \cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} $
So now here, the value will be,
\[
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \cos (30)}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{2}} \\
\sin \left( {165} \right) = \pm \sqrt {\dfrac{{2 - \sqrt 3 }}{4}} \\
\sin \left( {165} \right) = \pm \dfrac{{\sqrt {2 - \sqrt 3 } }}{2} \;
\]
So, the correct answer is “ $ \pm \dfrac{{\sqrt {2 - \sqrt 3 } }}{2} $ ”.
Note: While choosing the side to solve, always choose the side where you can directly apply the trigonometric identities. Also, remember the trigonometric identities $ {\sin ^2}x + {\cos ^2}x = 1 $ and $ \cos 2x = 2{\cos ^2}x - 1 $ . While opening the brackets make sure you are opening the brackets properly with their respective signs. Also remember that $ \tan x = \,\dfrac{{\sin x}}{{\cos x}} $ .
While applying the double angle identities, first choose the identity according to the terms you have then choose the terms from the expression involving which you are using the double angle identities.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

