
Find the exact value of the six trigonometric functions of $\theta $ for the point$\left( { - 4, - 6} \right)$.
Answer
493.5k+ views
Hint:We know that for a right angled triangle with angle $\theta $
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
So by using the above relations and other basic trigonometric identities we can find all the six trigonometric functions of $\theta $for the point$\left( { - 4, - 6} \right)$.
Complete step by step solution:
Given
$\left( { - 4, - 6} \right)..................................\left( i \right)$
Now as given in (i) we have the point $\left( { - 4, - 6} \right)$ at which we have to find the all 6 trigonometric functions.
So in order to find the 6 trigonometric functions at $ \left( { - 4, - 6} \right)$ we first have to construct a right angled triangle.
So for constructing a right angled triangle let us take:
$
x = - 4 \\
y = - 6 \\
$
Such that we have to find$c$.
Also by Pythagoras theorem we can write:
${x^2} + {y^2} = {c^2}......................\left( {ii} \right)$
On substituting $x\;{\text{and}}\;y$we can write:
$
{\left( { - 4} \right)^2} + {\left( { - 6} \right)^2} = {c^2} \\
\Rightarrow {c^2} = {\left( { - 4} \right)^2} + \left( { - 6} \right) \\
\Rightarrow {c^2} = 16 + 36 \\
\Rightarrow {c^2} = 52 \\
\Rightarrow c = 2\sqrt {13} .........................\left( {iii} \right) \\
$
Now we have:
$
{\text{adjacent}}\;{\text{side}} = - 4 \\
{\text{opposite}}\;{\text{side}}\; = - 6 \\
{\text{hypotenuse}}\; = 2\sqrt {13} \\
$
So in order to find the first 3 basic trigonometric functions we have the formulas:
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
On substituting the values we have found from the right angled triangle we get:
\[
\sin \theta = \dfrac{{ - 6}}{{2\sqrt {13} }} = - \dfrac{3}{{\sqrt {13} }} = - 3\dfrac{{\sqrt {13} }}{{13}}
\\
\cos \theta = \dfrac{{ - 4}}{{2\sqrt {13} }} = - \dfrac{2}{{\sqrt {13} }} = - 2\dfrac{{\sqrt {13} }}{{13}}
\\
\tan \theta = \dfrac{{ - 6}}{{ - 4}} = \dfrac{3}{2} \\
\]
Since the other 3 trigonometric functions are inverse in nature to the above mentioned trigonometric functions, we just have to take the reciprocal of the above found values.
Now to find the other 3 trigonometric formulas we have the formulas:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} \\
\sec \theta = \dfrac{1}{{\cos \theta }} \\
\cot \theta = \dfrac{1}{{\tan \theta }} \\
\]
On substituting we get:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} = - \dfrac{{13}}{{3 \times \sqrt {13} }} = -
\dfrac{{\sqrt {13} }}{3} \\
\sec \theta = \dfrac{1}{{\cos \theta }} = - \dfrac{{13}}{{2 \times \sqrt {13} }} = - \dfrac{{\sqrt {13}
}}{2} \\
\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{2}{3} \\
\]
Now we have found the values of all the 6 trigonometric formulas.
Therefore our six trigonometric functions of $\theta $ for the point $\left( { - 4, - 6} \right)$ are:
\[
\sin \theta = - 3\dfrac{{\sqrt {13} }}{{13}} \\
\cos \theta = - 2\dfrac{{\sqrt {13} }}{{13}} \\
\tan \theta = \dfrac{3}{2} \\
{\text{cosec}}\theta = - \dfrac{{\sqrt {13} }}{3} \\
\sec \theta = - \dfrac{{\sqrt {13} }}{2} \\
\cot \theta = \dfrac{2}{3} \\
\]
Note: Some other equations needed for solving trigonometric problems are:
\[\begin{array}{*{20}{l}}
{\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right)} \\
{\cos \left( {2\theta } \right) = {{\cos }^2}\left( \theta \right)-{{\sin }^2}\left( \theta \right) = 1-
2{\text{ }}{{\sin }^2}\left( \theta \right) = 2{\text{ }}{{\cos }^2}\left( \theta \right)-1}
\end{array}\]
While solving problems similar to the above ones one should take care while forming the triangle and finding the values of its sides. Also while representing the values of trigonometric functions one should not forget to rationalize the denominator.

\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
So by using the above relations and other basic trigonometric identities we can find all the six trigonometric functions of $\theta $for the point$\left( { - 4, - 6} \right)$.
Complete step by step solution:
Given
$\left( { - 4, - 6} \right)..................................\left( i \right)$
Now as given in (i) we have the point $\left( { - 4, - 6} \right)$ at which we have to find the all 6 trigonometric functions.
So in order to find the 6 trigonometric functions at $ \left( { - 4, - 6} \right)$ we first have to construct a right angled triangle.
So for constructing a right angled triangle let us take:
$
x = - 4 \\
y = - 6 \\
$

Such that we have to find$c$.
Also by Pythagoras theorem we can write:
${x^2} + {y^2} = {c^2}......................\left( {ii} \right)$
On substituting $x\;{\text{and}}\;y$we can write:
$
{\left( { - 4} \right)^2} + {\left( { - 6} \right)^2} = {c^2} \\
\Rightarrow {c^2} = {\left( { - 4} \right)^2} + \left( { - 6} \right) \\
\Rightarrow {c^2} = 16 + 36 \\
\Rightarrow {c^2} = 52 \\
\Rightarrow c = 2\sqrt {13} .........................\left( {iii} \right) \\
$
Now we have:
$
{\text{adjacent}}\;{\text{side}} = - 4 \\
{\text{opposite}}\;{\text{side}}\; = - 6 \\
{\text{hypotenuse}}\; = 2\sqrt {13} \\
$
So in order to find the first 3 basic trigonometric functions we have the formulas:
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
On substituting the values we have found from the right angled triangle we get:
\[
\sin \theta = \dfrac{{ - 6}}{{2\sqrt {13} }} = - \dfrac{3}{{\sqrt {13} }} = - 3\dfrac{{\sqrt {13} }}{{13}}
\\
\cos \theta = \dfrac{{ - 4}}{{2\sqrt {13} }} = - \dfrac{2}{{\sqrt {13} }} = - 2\dfrac{{\sqrt {13} }}{{13}}
\\
\tan \theta = \dfrac{{ - 6}}{{ - 4}} = \dfrac{3}{2} \\
\]
Since the other 3 trigonometric functions are inverse in nature to the above mentioned trigonometric functions, we just have to take the reciprocal of the above found values.
Now to find the other 3 trigonometric formulas we have the formulas:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} \\
\sec \theta = \dfrac{1}{{\cos \theta }} \\
\cot \theta = \dfrac{1}{{\tan \theta }} \\
\]
On substituting we get:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} = - \dfrac{{13}}{{3 \times \sqrt {13} }} = -
\dfrac{{\sqrt {13} }}{3} \\
\sec \theta = \dfrac{1}{{\cos \theta }} = - \dfrac{{13}}{{2 \times \sqrt {13} }} = - \dfrac{{\sqrt {13}
}}{2} \\
\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{2}{3} \\
\]
Now we have found the values of all the 6 trigonometric formulas.
Therefore our six trigonometric functions of $\theta $ for the point $\left( { - 4, - 6} \right)$ are:
\[
\sin \theta = - 3\dfrac{{\sqrt {13} }}{{13}} \\
\cos \theta = - 2\dfrac{{\sqrt {13} }}{{13}} \\
\tan \theta = \dfrac{3}{2} \\
{\text{cosec}}\theta = - \dfrac{{\sqrt {13} }}{3} \\
\sec \theta = - \dfrac{{\sqrt {13} }}{2} \\
\cot \theta = \dfrac{2}{3} \\
\]
Note: Some other equations needed for solving trigonometric problems are:
\[\begin{array}{*{20}{l}}
{\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right)} \\
{\cos \left( {2\theta } \right) = {{\cos }^2}\left( \theta \right)-{{\sin }^2}\left( \theta \right) = 1-
2{\text{ }}{{\sin }^2}\left( \theta \right) = 2{\text{ }}{{\cos }^2}\left( \theta \right)-1}
\end{array}\]
While solving problems similar to the above ones one should take care while forming the triangle and finding the values of its sides. Also while representing the values of trigonometric functions one should not forget to rationalize the denominator.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
