
Find the exact value of the six trigonometric functions of $\theta $ for the point$\left( { - 4, - 6} \right)$.
Answer
542.1k+ views
Hint:We know that for a right angled triangle with angle $\theta $
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
So by using the above relations and other basic trigonometric identities we can find all the six trigonometric functions of $\theta $for the point$\left( { - 4, - 6} \right)$.
Complete step by step solution:
Given
$\left( { - 4, - 6} \right)..................................\left( i \right)$
Now as given in (i) we have the point $\left( { - 4, - 6} \right)$ at which we have to find the all 6 trigonometric functions.
So in order to find the 6 trigonometric functions at $ \left( { - 4, - 6} \right)$ we first have to construct a right angled triangle.
So for constructing a right angled triangle let us take:
$
x = - 4 \\
y = - 6 \\
$
Such that we have to find$c$.
Also by Pythagoras theorem we can write:
${x^2} + {y^2} = {c^2}......................\left( {ii} \right)$
On substituting $x\;{\text{and}}\;y$we can write:
$
{\left( { - 4} \right)^2} + {\left( { - 6} \right)^2} = {c^2} \\
\Rightarrow {c^2} = {\left( { - 4} \right)^2} + \left( { - 6} \right) \\
\Rightarrow {c^2} = 16 + 36 \\
\Rightarrow {c^2} = 52 \\
\Rightarrow c = 2\sqrt {13} .........................\left( {iii} \right) \\
$
Now we have:
$
{\text{adjacent}}\;{\text{side}} = - 4 \\
{\text{opposite}}\;{\text{side}}\; = - 6 \\
{\text{hypotenuse}}\; = 2\sqrt {13} \\
$
So in order to find the first 3 basic trigonometric functions we have the formulas:
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
On substituting the values we have found from the right angled triangle we get:
\[
\sin \theta = \dfrac{{ - 6}}{{2\sqrt {13} }} = - \dfrac{3}{{\sqrt {13} }} = - 3\dfrac{{\sqrt {13} }}{{13}}
\\
\cos \theta = \dfrac{{ - 4}}{{2\sqrt {13} }} = - \dfrac{2}{{\sqrt {13} }} = - 2\dfrac{{\sqrt {13} }}{{13}}
\\
\tan \theta = \dfrac{{ - 6}}{{ - 4}} = \dfrac{3}{2} \\
\]
Since the other 3 trigonometric functions are inverse in nature to the above mentioned trigonometric functions, we just have to take the reciprocal of the above found values.
Now to find the other 3 trigonometric formulas we have the formulas:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} \\
\sec \theta = \dfrac{1}{{\cos \theta }} \\
\cot \theta = \dfrac{1}{{\tan \theta }} \\
\]
On substituting we get:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} = - \dfrac{{13}}{{3 \times \sqrt {13} }} = -
\dfrac{{\sqrt {13} }}{3} \\
\sec \theta = \dfrac{1}{{\cos \theta }} = - \dfrac{{13}}{{2 \times \sqrt {13} }} = - \dfrac{{\sqrt {13}
}}{2} \\
\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{2}{3} \\
\]
Now we have found the values of all the 6 trigonometric formulas.
Therefore our six trigonometric functions of $\theta $ for the point $\left( { - 4, - 6} \right)$ are:
\[
\sin \theta = - 3\dfrac{{\sqrt {13} }}{{13}} \\
\cos \theta = - 2\dfrac{{\sqrt {13} }}{{13}} \\
\tan \theta = \dfrac{3}{2} \\
{\text{cosec}}\theta = - \dfrac{{\sqrt {13} }}{3} \\
\sec \theta = - \dfrac{{\sqrt {13} }}{2} \\
\cot \theta = \dfrac{2}{3} \\
\]
Note: Some other equations needed for solving trigonometric problems are:
\[\begin{array}{*{20}{l}}
{\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right)} \\
{\cos \left( {2\theta } \right) = {{\cos }^2}\left( \theta \right)-{{\sin }^2}\left( \theta \right) = 1-
2{\text{ }}{{\sin }^2}\left( \theta \right) = 2{\text{ }}{{\cos }^2}\left( \theta \right)-1}
\end{array}\]
While solving problems similar to the above ones one should take care while forming the triangle and finding the values of its sides. Also while representing the values of trigonometric functions one should not forget to rationalize the denominator.
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
So by using the above relations and other basic trigonometric identities we can find all the six trigonometric functions of $\theta $for the point$\left( { - 4, - 6} \right)$.
Complete step by step solution:
Given
$\left( { - 4, - 6} \right)..................................\left( i \right)$
Now as given in (i) we have the point $\left( { - 4, - 6} \right)$ at which we have to find the all 6 trigonometric functions.
So in order to find the 6 trigonometric functions at $ \left( { - 4, - 6} \right)$ we first have to construct a right angled triangle.
So for constructing a right angled triangle let us take:
$
x = - 4 \\
y = - 6 \\
$
Such that we have to find$c$.
Also by Pythagoras theorem we can write:
${x^2} + {y^2} = {c^2}......................\left( {ii} \right)$
On substituting $x\;{\text{and}}\;y$we can write:
$
{\left( { - 4} \right)^2} + {\left( { - 6} \right)^2} = {c^2} \\
\Rightarrow {c^2} = {\left( { - 4} \right)^2} + \left( { - 6} \right) \\
\Rightarrow {c^2} = 16 + 36 \\
\Rightarrow {c^2} = 52 \\
\Rightarrow c = 2\sqrt {13} .........................\left( {iii} \right) \\
$
Now we have:
$
{\text{adjacent}}\;{\text{side}} = - 4 \\
{\text{opposite}}\;{\text{side}}\; = - 6 \\
{\text{hypotenuse}}\; = 2\sqrt {13} \\
$
So in order to find the first 3 basic trigonometric functions we have the formulas:
\[
\sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\
\]
On substituting the values we have found from the right angled triangle we get:
\[
\sin \theta = \dfrac{{ - 6}}{{2\sqrt {13} }} = - \dfrac{3}{{\sqrt {13} }} = - 3\dfrac{{\sqrt {13} }}{{13}}
\\
\cos \theta = \dfrac{{ - 4}}{{2\sqrt {13} }} = - \dfrac{2}{{\sqrt {13} }} = - 2\dfrac{{\sqrt {13} }}{{13}}
\\
\tan \theta = \dfrac{{ - 6}}{{ - 4}} = \dfrac{3}{2} \\
\]
Since the other 3 trigonometric functions are inverse in nature to the above mentioned trigonometric functions, we just have to take the reciprocal of the above found values.
Now to find the other 3 trigonometric formulas we have the formulas:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} \\
\sec \theta = \dfrac{1}{{\cos \theta }} \\
\cot \theta = \dfrac{1}{{\tan \theta }} \\
\]
On substituting we get:
\[
{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} = - \dfrac{{13}}{{3 \times \sqrt {13} }} = -
\dfrac{{\sqrt {13} }}{3} \\
\sec \theta = \dfrac{1}{{\cos \theta }} = - \dfrac{{13}}{{2 \times \sqrt {13} }} = - \dfrac{{\sqrt {13}
}}{2} \\
\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{2}{3} \\
\]
Now we have found the values of all the 6 trigonometric formulas.
Therefore our six trigonometric functions of $\theta $ for the point $\left( { - 4, - 6} \right)$ are:
\[
\sin \theta = - 3\dfrac{{\sqrt {13} }}{{13}} \\
\cos \theta = - 2\dfrac{{\sqrt {13} }}{{13}} \\
\tan \theta = \dfrac{3}{2} \\
{\text{cosec}}\theta = - \dfrac{{\sqrt {13} }}{3} \\
\sec \theta = - \dfrac{{\sqrt {13} }}{2} \\
\cot \theta = \dfrac{2}{3} \\
\]
Note: Some other equations needed for solving trigonometric problems are:
\[\begin{array}{*{20}{l}}
{\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right)} \\
{\cos \left( {2\theta } \right) = {{\cos }^2}\left( \theta \right)-{{\sin }^2}\left( \theta \right) = 1-
2{\text{ }}{{\sin }^2}\left( \theta \right) = 2{\text{ }}{{\cos }^2}\left( \theta \right)-1}
\end{array}\]
While solving problems similar to the above ones one should take care while forming the triangle and finding the values of its sides. Also while representing the values of trigonometric functions one should not forget to rationalize the denominator.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

