
How do you find the exact value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $
Answer
548.7k+ views
Hint: We will first recall the concept of the inverse trigonometric function and then we will use the geometrical method to find the exact value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ . So, we will draw a right triangle which is making an angle $ \theta $ between base and the hypotenuse of the triangle. Then, let us take $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , so the hypotenuse of triangle will be equal to 5 and will be equal to 3 because $ {{\cos }^{-1}}\left( \dfrac{3}{5} \right)=\theta \Rightarrow \cos \theta =\dfrac{3}{5} $ .
Complete step by step answer:
We know that the inverse trigonometric also know as arc functions which perform the inverse operations of the trigonometric functions.
We will use the geometrical method to solve the above question.
We know that if h is the hypotenuse, p is the perpendicular, and b is the base of a right angle triangle and $ \theta $ is the angle between base and the hypotenuse of the triangle then $ \tan \theta =\dfrac{p}{b} $ , $ \cos \theta =\dfrac{b}{h} $
So, in $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ let us take $ \theta =\arccos \left( \dfrac{3}{5} \right) $ ,
So, we will find the value of $ \tan \theta $ to get the value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ .
Also, we know that $ \arccos \left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{3}{5} \right)=\theta $
Now, we will take $ \cos $ on both the side of above expression, we will get:
$ \cos \left( {{\cos }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \theta $
We know that $ \cos \left( {{\cos }^{-1}}\alpha \right)=\alpha $
So, we can write $ \cos \theta =\dfrac{3}{5} $
And, from triangle law of trigonometric function we know that $ \cos \theta =\dfrac{b}{h} $ , where $ \theta $ is the angle between base (b) and the hypotenuse (h) of the triangle.
So, from $ \cos \theta =\dfrac{3}{5} $ , we can say that b = 3, and h = 5.
From, Pythagoras Theorem, we know that if base and hypotenuse are known then, perpendicular is given by:
$ p=\sqrt{{{h}^{2}}-{{b}^{2}}} $
So, $ p=\sqrt{{{5}^{2}}-{{3}^{2}}} $
= $ \sqrt{25-9} $
= $ \sqrt{16}=4 $
Now, we will again use the triangle rule to find the value of $ \tan \theta $ , as from triangle rule we know that $ \tan \theta =\dfrac{p}{b} $
And, we know that p = 4 and b = 3, so $ \tan \theta =\dfrac{4}{3} $ .
Since, we have assumed that $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , so $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\dfrac{4}{3} $ .
This is our required solution.
Note:
We can also solve the above question alternatively by using the identity $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
Since, we know that $ \sec \theta =\dfrac{1}{\cos \theta } $ , so we write $ \tan \theta =\sqrt{\dfrac{1}{{{\cos }^{2}}\theta }-1} $
So, when $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , then $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\cos }^{2}}\left( \arccos \left( \dfrac{3}{5} \right) \right)}-1} $
Since, we know that $ {{\cos }^{2}}\left( \arccos \left( \alpha \right) \right)={{\alpha }^{2}} $ .
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\left( \dfrac{3}{5} \right)}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}}{{{3}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}-{{3}^{2}}}{{{3}^{2}}}}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{4}^{2}}}{{{3}^{2}}}}=\dfrac{4}{3}\]
Complete step by step answer:
We know that the inverse trigonometric also know as arc functions which perform the inverse operations of the trigonometric functions.
We will use the geometrical method to solve the above question.
We know that if h is the hypotenuse, p is the perpendicular, and b is the base of a right angle triangle and $ \theta $ is the angle between base and the hypotenuse of the triangle then $ \tan \theta =\dfrac{p}{b} $ , $ \cos \theta =\dfrac{b}{h} $
So, in $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ let us take $ \theta =\arccos \left( \dfrac{3}{5} \right) $ ,
So, we will find the value of $ \tan \theta $ to get the value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ .
Also, we know that $ \arccos \left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{3}{5} \right)=\theta $
Now, we will take $ \cos $ on both the side of above expression, we will get:
$ \cos \left( {{\cos }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \theta $
We know that $ \cos \left( {{\cos }^{-1}}\alpha \right)=\alpha $
So, we can write $ \cos \theta =\dfrac{3}{5} $
And, from triangle law of trigonometric function we know that $ \cos \theta =\dfrac{b}{h} $ , where $ \theta $ is the angle between base (b) and the hypotenuse (h) of the triangle.
So, from $ \cos \theta =\dfrac{3}{5} $ , we can say that b = 3, and h = 5.
From, Pythagoras Theorem, we know that if base and hypotenuse are known then, perpendicular is given by:
$ p=\sqrt{{{h}^{2}}-{{b}^{2}}} $
So, $ p=\sqrt{{{5}^{2}}-{{3}^{2}}} $
= $ \sqrt{25-9} $
= $ \sqrt{16}=4 $
Now, we will again use the triangle rule to find the value of $ \tan \theta $ , as from triangle rule we know that $ \tan \theta =\dfrac{p}{b} $
And, we know that p = 4 and b = 3, so $ \tan \theta =\dfrac{4}{3} $ .
Since, we have assumed that $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , so $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\dfrac{4}{3} $ .
This is our required solution.
Note:
We can also solve the above question alternatively by using the identity $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
Since, we know that $ \sec \theta =\dfrac{1}{\cos \theta } $ , so we write $ \tan \theta =\sqrt{\dfrac{1}{{{\cos }^{2}}\theta }-1} $
So, when $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , then $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\cos }^{2}}\left( \arccos \left( \dfrac{3}{5} \right) \right)}-1} $
Since, we know that $ {{\cos }^{2}}\left( \arccos \left( \alpha \right) \right)={{\alpha }^{2}} $ .
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\left( \dfrac{3}{5} \right)}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}}{{{3}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}-{{3}^{2}}}{{{3}^{2}}}}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{4}^{2}}}{{{3}^{2}}}}=\dfrac{4}{3}\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

