
How do you find the exact value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $
Answer
562.8k+ views
Hint: We will first recall the concept of the inverse trigonometric function and then we will use the geometrical method to find the exact value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ . So, we will draw a right triangle which is making an angle $ \theta $ between base and the hypotenuse of the triangle. Then, let us take $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , so the hypotenuse of triangle will be equal to 5 and will be equal to 3 because $ {{\cos }^{-1}}\left( \dfrac{3}{5} \right)=\theta \Rightarrow \cos \theta =\dfrac{3}{5} $ .
Complete step by step answer:
We know that the inverse trigonometric also know as arc functions which perform the inverse operations of the trigonometric functions.
We will use the geometrical method to solve the above question.
We know that if h is the hypotenuse, p is the perpendicular, and b is the base of a right angle triangle and $ \theta $ is the angle between base and the hypotenuse of the triangle then $ \tan \theta =\dfrac{p}{b} $ , $ \cos \theta =\dfrac{b}{h} $
So, in $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ let us take $ \theta =\arccos \left( \dfrac{3}{5} \right) $ ,
So, we will find the value of $ \tan \theta $ to get the value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ .
Also, we know that $ \arccos \left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{3}{5} \right)=\theta $
Now, we will take $ \cos $ on both the side of above expression, we will get:
$ \cos \left( {{\cos }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \theta $
We know that $ \cos \left( {{\cos }^{-1}}\alpha \right)=\alpha $
So, we can write $ \cos \theta =\dfrac{3}{5} $
And, from triangle law of trigonometric function we know that $ \cos \theta =\dfrac{b}{h} $ , where $ \theta $ is the angle between base (b) and the hypotenuse (h) of the triangle.
So, from $ \cos \theta =\dfrac{3}{5} $ , we can say that b = 3, and h = 5.
From, Pythagoras Theorem, we know that if base and hypotenuse are known then, perpendicular is given by:
$ p=\sqrt{{{h}^{2}}-{{b}^{2}}} $
So, $ p=\sqrt{{{5}^{2}}-{{3}^{2}}} $
= $ \sqrt{25-9} $
= $ \sqrt{16}=4 $
Now, we will again use the triangle rule to find the value of $ \tan \theta $ , as from triangle rule we know that $ \tan \theta =\dfrac{p}{b} $
And, we know that p = 4 and b = 3, so $ \tan \theta =\dfrac{4}{3} $ .
Since, we have assumed that $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , so $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\dfrac{4}{3} $ .
This is our required solution.
Note:
We can also solve the above question alternatively by using the identity $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
Since, we know that $ \sec \theta =\dfrac{1}{\cos \theta } $ , so we write $ \tan \theta =\sqrt{\dfrac{1}{{{\cos }^{2}}\theta }-1} $
So, when $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , then $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\cos }^{2}}\left( \arccos \left( \dfrac{3}{5} \right) \right)}-1} $
Since, we know that $ {{\cos }^{2}}\left( \arccos \left( \alpha \right) \right)={{\alpha }^{2}} $ .
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\left( \dfrac{3}{5} \right)}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}}{{{3}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}-{{3}^{2}}}{{{3}^{2}}}}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{4}^{2}}}{{{3}^{2}}}}=\dfrac{4}{3}\]
Complete step by step answer:
We know that the inverse trigonometric also know as arc functions which perform the inverse operations of the trigonometric functions.
We will use the geometrical method to solve the above question.
We know that if h is the hypotenuse, p is the perpendicular, and b is the base of a right angle triangle and $ \theta $ is the angle between base and the hypotenuse of the triangle then $ \tan \theta =\dfrac{p}{b} $ , $ \cos \theta =\dfrac{b}{h} $
So, in $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ let us take $ \theta =\arccos \left( \dfrac{3}{5} \right) $ ,
So, we will find the value of $ \tan \theta $ to get the value of $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right) $ .
Also, we know that $ \arccos \left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{3}{5} \right)=\theta $
Now, we will take $ \cos $ on both the side of above expression, we will get:
$ \cos \left( {{\cos }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \theta $
We know that $ \cos \left( {{\cos }^{-1}}\alpha \right)=\alpha $
So, we can write $ \cos \theta =\dfrac{3}{5} $
And, from triangle law of trigonometric function we know that $ \cos \theta =\dfrac{b}{h} $ , where $ \theta $ is the angle between base (b) and the hypotenuse (h) of the triangle.
So, from $ \cos \theta =\dfrac{3}{5} $ , we can say that b = 3, and h = 5.
From, Pythagoras Theorem, we know that if base and hypotenuse are known then, perpendicular is given by:
$ p=\sqrt{{{h}^{2}}-{{b}^{2}}} $
So, $ p=\sqrt{{{5}^{2}}-{{3}^{2}}} $
= $ \sqrt{25-9} $
= $ \sqrt{16}=4 $
Now, we will again use the triangle rule to find the value of $ \tan \theta $ , as from triangle rule we know that $ \tan \theta =\dfrac{p}{b} $
And, we know that p = 4 and b = 3, so $ \tan \theta =\dfrac{4}{3} $ .
Since, we have assumed that $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , so $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\dfrac{4}{3} $ .
This is our required solution.
Note:
We can also solve the above question alternatively by using the identity $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
Since, we know that $ \sec \theta =\dfrac{1}{\cos \theta } $ , so we write $ \tan \theta =\sqrt{\dfrac{1}{{{\cos }^{2}}\theta }-1} $
So, when $ \theta =\arccos \left( \dfrac{3}{5} \right) $ , then $ \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\cos }^{2}}\left( \arccos \left( \dfrac{3}{5} \right) \right)}-1} $
Since, we know that $ {{\cos }^{2}}\left( \arccos \left( \alpha \right) \right)={{\alpha }^{2}} $ .
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{1}{{{\left( \dfrac{3}{5} \right)}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}}{{{3}^{2}}}-1}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{5}^{2}}-{{3}^{2}}}{{{3}^{2}}}}\]
\[\Rightarrow \tan \left( \arccos \left( \dfrac{3}{5} \right) \right)=\sqrt{\dfrac{{{4}^{2}}}{{{3}^{2}}}}=\dfrac{4}{3}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

