
How will you find the exact value of $\sin \left( {u + v} \right)$ given that $\sin u = \dfrac{5}{{13}}$ and $\cos v = - \dfrac{3}{5}$?
Answer
550.5k+ views
Hint:We know that to find the exact value of $\sin \left( {u + v} \right)$, we need to use the sum formula for sine functions. We are given the values of $\sin u$ and $\cos v$. But, for using the sum formula for sine function, we need values of $\sin v$ and $\cos u$. For this, we will use the basic trigonometric relation between sine and cosine function.
Formulas used:
$\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
${\sin ^2}A + {\cos ^2}A = 1$
Complete step by step answer:
We will first find the value of $\cos u$. For this we will use the relation between sine and cosine function ${\sin ^2}A + {\cos ^2}A = 1$. For angle $u$, we can say that,
${\sin ^2}u + {\cos ^2}u = 1 \\
\Rightarrow {\cos ^2}u = 1 - {\sin ^2}u \\ $
We are given the value of $\sin u = \dfrac{5}{{13}}$,
\[{\cos ^2}u = 1 - {\left( {\dfrac{5}{{13}}} \right)^2} \\
\Rightarrow {\cos ^2}u = 1 - \dfrac{{25}}{{169}} \\
\Rightarrow {\cos ^2}u = \dfrac{{144}}{{169}} \\
\Rightarrow \cos u = \pm \dfrac{{12}}{{13}} \\ \]
Now, we will find the value of $\sin v$.
For angle $v$, we can say that,
${\sin ^2}v + {\cos ^2}v = 1 \\
\Rightarrow {\sin ^2}v = 1 - {\cos ^2}v \\ $
We are given the value of $\cos v = - \dfrac{3}{5}$,
\[{\sin ^2}v = 1 - {\left( { - \dfrac{3}{5}} \right)^2} \\
\Rightarrow {\sin ^2}v = 1 - \dfrac{9}{{25}} \\
\Rightarrow {\sin ^2}v = \dfrac{{16}}{{25}} \\
\Rightarrow \sin v = \pm \dfrac{4}{5} \\ \]
We will now find the value of $\sin \left( {u + v} \right)$.
We know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
Therefore, we can say that,
$\sin \left( {u + v} \right) = \sin u\cos v + \cos u\sin v$
We have, $\sin u = \dfrac{5}{{13}}$, $\cos v = - \dfrac{3}{5}$, \[\cos u = \pm \dfrac{{12}}{{13}}\], \[\sin v = \pm \dfrac{4}{5}\]
$ \Rightarrow \sin \left( {u + v} \right) = \left( {\dfrac{5}{{13}}} \right)\left( { - \dfrac{3}{5}} \right) + \left( { \pm \dfrac{{12}}{{13}}} \right)\left( { \pm \dfrac{4}{5}} \right) = - \dfrac{{15}}{{65}} \pm \dfrac{{48}}{{65}}$
\[ \Rightarrow \sin \left( {u + v} \right) = \dfrac{{ - 15 - 48}}{{65}} = - \dfrac{{63}}{{65}}\]
\[ \therefore \sin \left( {u + v} \right) = \dfrac{{ - 15 + 48}}{{65}} = \dfrac{{33}}{{65}}\]
Therefore, the exact value of $\sin \left( {u + v} \right)$ is $ - \dfrac{{63}}{{65}}$ or $\dfrac{{33}}{{65}}$.
Note:Here, we have used the formula for the sum of the sine functions. This states that the sum formula for sine function states that the sine of the sum of two angles equals the product of the sine of the first angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second angle. The formulas for sum and difference for different trigonometric functions can be used to find the exact values of the sine, cosine, or tangent of an angle.
Formulas used:
$\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
${\sin ^2}A + {\cos ^2}A = 1$
Complete step by step answer:
We will first find the value of $\cos u$. For this we will use the relation between sine and cosine function ${\sin ^2}A + {\cos ^2}A = 1$. For angle $u$, we can say that,
${\sin ^2}u + {\cos ^2}u = 1 \\
\Rightarrow {\cos ^2}u = 1 - {\sin ^2}u \\ $
We are given the value of $\sin u = \dfrac{5}{{13}}$,
\[{\cos ^2}u = 1 - {\left( {\dfrac{5}{{13}}} \right)^2} \\
\Rightarrow {\cos ^2}u = 1 - \dfrac{{25}}{{169}} \\
\Rightarrow {\cos ^2}u = \dfrac{{144}}{{169}} \\
\Rightarrow \cos u = \pm \dfrac{{12}}{{13}} \\ \]
Now, we will find the value of $\sin v$.
For angle $v$, we can say that,
${\sin ^2}v + {\cos ^2}v = 1 \\
\Rightarrow {\sin ^2}v = 1 - {\cos ^2}v \\ $
We are given the value of $\cos v = - \dfrac{3}{5}$,
\[{\sin ^2}v = 1 - {\left( { - \dfrac{3}{5}} \right)^2} \\
\Rightarrow {\sin ^2}v = 1 - \dfrac{9}{{25}} \\
\Rightarrow {\sin ^2}v = \dfrac{{16}}{{25}} \\
\Rightarrow \sin v = \pm \dfrac{4}{5} \\ \]
We will now find the value of $\sin \left( {u + v} \right)$.
We know that $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
Therefore, we can say that,
$\sin \left( {u + v} \right) = \sin u\cos v + \cos u\sin v$
We have, $\sin u = \dfrac{5}{{13}}$, $\cos v = - \dfrac{3}{5}$, \[\cos u = \pm \dfrac{{12}}{{13}}\], \[\sin v = \pm \dfrac{4}{5}\]
$ \Rightarrow \sin \left( {u + v} \right) = \left( {\dfrac{5}{{13}}} \right)\left( { - \dfrac{3}{5}} \right) + \left( { \pm \dfrac{{12}}{{13}}} \right)\left( { \pm \dfrac{4}{5}} \right) = - \dfrac{{15}}{{65}} \pm \dfrac{{48}}{{65}}$
\[ \Rightarrow \sin \left( {u + v} \right) = \dfrac{{ - 15 - 48}}{{65}} = - \dfrac{{63}}{{65}}\]
\[ \therefore \sin \left( {u + v} \right) = \dfrac{{ - 15 + 48}}{{65}} = \dfrac{{33}}{{65}}\]
Therefore, the exact value of $\sin \left( {u + v} \right)$ is $ - \dfrac{{63}}{{65}}$ or $\dfrac{{33}}{{65}}$.
Note:Here, we have used the formula for the sum of the sine functions. This states that the sum formula for sine function states that the sine of the sum of two angles equals the product of the sine of the first angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second angle. The formulas for sum and difference for different trigonometric functions can be used to find the exact values of the sine, cosine, or tangent of an angle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

