
How do you find the exact value of $\sin 67.5$ degrees?
Answer
448.5k+ views
Hint: We will find the acute angle equivalent to the angle ${{67.5}^{\circ }}={{\left( \dfrac{135}{2} \right)}^{\circ }}.$ Then we will use the sine half-angle identity. We will also use another identity $\cos {{\left( 180-x \right)}^{\circ }}=-\cos {{x}^{\circ }}$ for the cosine function is negative in the second quadrant. We are thorough with the value of cosine of ${{45}^{\circ }}.$ That is $\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}.$
Complete step-by-step solution:
We are given with $\sin {{67.5}^{\circ }}.$
We know that $67.5=\dfrac{135}{2}.$
So, we can write $\sin {{67.5}^{\circ }}=\sin {{\left( \dfrac{135}{2} \right)}^{\circ }}.$
We will use the sine half-angle identity.
So, we will get \[\sin {{67.5}^{\circ }}=\pm \sqrt{\dfrac{1-\cos {{135}^{\circ }}}{2}}.\]
Since the sine function is positive in the first quadrant, this will become $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{1-\cos {{135}^{\circ }}}{2}}.$
We know that $135=180-45.$
Now let us consider the cosine function inside the square root. We are going to find the value of cosine of angle ${{135}^{\circ }}.$
That is, $\cos {{135}^{\circ }}=\cos {{\left( 180-45 \right)}^{\circ }}$
After substituting for $135$ in the cosine function, we will use the identity $\cos {{\left( 180-x \right)}^{\circ }}=-\cos {{x}^{\circ }},$ [The cosine function is negative in the second quadrant.]
Thus, we will get the cosine function in this problem as $\cos {{135}^{\circ }}=-\cos {{45}^{\circ }}.$
We know that the value of $\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},$ for ${{45}^{\circ }}={{\left( \dfrac{\pi }{2} \right)}^{c}}$ and $\cos {{\left( \dfrac{\pi }{2} \right)}^{c}}=\dfrac{1}{\sqrt{2}}.$
From this we will get $\cos {{135}^{\circ }}=-\cos {{45}^{\circ }}=-\dfrac{1}{\sqrt{2}}.$
In the next step we are going to substitute the value of the cosine function inside the square root.
So, the value of the given sine function will become $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{1-\cos {{135}^{\circ }}}{2}}=\sqrt{\dfrac{1-\left( -\dfrac{1}{\sqrt{2}} \right)}{2}}.$
This will lead us to the step where we get $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{1+\dfrac{1}{\sqrt{2}}}{2}}.$
Now consider the terms in the numerator inside the square root on the right-hand side of the above written equation. That is $1+\dfrac{1}{\sqrt{2}}.$ We want to make the denominators of both the summands the same. For that we will take LCM as $\dfrac{\sqrt{2}+1}{\sqrt{2}}.$ Multiply both the numerator and the denominator with $\sqrt{2}$ to get $\dfrac{2+\sqrt{2}}{2}.$
Now we will get $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{\dfrac{2+\sqrt{2}}{2}}{2}}=\sqrt{\dfrac{2+\sqrt{2}}{4}}=\dfrac{\sqrt{2+\sqrt{2}}}{\sqrt{4}}=\dfrac{\sqrt{2+\sqrt{2}}}{2}.$
Hence the exact value of $\sin {{67.5}^{\circ }}=\dfrac{\sqrt{2+\sqrt{2}}}{2}=0.92388.$
Note: The Sine Half-Angle identity is obtained as follows:
$\Rightarrow \cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x=1-{{\sin }^{2}}x-{{\sin }^{2}}x$
$\Rightarrow \cos 2x=1-2{{\sin }^{2}}x$
$\Rightarrow 2{{\sin }^{2}}x=1+\cos 2x$
$\Rightarrow {{\sin }^{2}}x=\dfrac{1+\cos 2x}{2}$
$\Rightarrow \sin x=\pm \sqrt{\dfrac{1+\cos 2x}{2}.}$
Here we convert the given angle in the standard angles such as $\left( 180, 30, 45, 60, 90 … \right)$ by using the half angle identity to make the problem easier.
Complete step-by-step solution:
We are given with $\sin {{67.5}^{\circ }}.$
We know that $67.5=\dfrac{135}{2}.$
So, we can write $\sin {{67.5}^{\circ }}=\sin {{\left( \dfrac{135}{2} \right)}^{\circ }}.$
We will use the sine half-angle identity.
So, we will get \[\sin {{67.5}^{\circ }}=\pm \sqrt{\dfrac{1-\cos {{135}^{\circ }}}{2}}.\]
Since the sine function is positive in the first quadrant, this will become $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{1-\cos {{135}^{\circ }}}{2}}.$
We know that $135=180-45.$
Now let us consider the cosine function inside the square root. We are going to find the value of cosine of angle ${{135}^{\circ }}.$
That is, $\cos {{135}^{\circ }}=\cos {{\left( 180-45 \right)}^{\circ }}$
After substituting for $135$ in the cosine function, we will use the identity $\cos {{\left( 180-x \right)}^{\circ }}=-\cos {{x}^{\circ }},$ [The cosine function is negative in the second quadrant.]
Thus, we will get the cosine function in this problem as $\cos {{135}^{\circ }}=-\cos {{45}^{\circ }}.$
We know that the value of $\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},$ for ${{45}^{\circ }}={{\left( \dfrac{\pi }{2} \right)}^{c}}$ and $\cos {{\left( \dfrac{\pi }{2} \right)}^{c}}=\dfrac{1}{\sqrt{2}}.$
From this we will get $\cos {{135}^{\circ }}=-\cos {{45}^{\circ }}=-\dfrac{1}{\sqrt{2}}.$
In the next step we are going to substitute the value of the cosine function inside the square root.
So, the value of the given sine function will become $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{1-\cos {{135}^{\circ }}}{2}}=\sqrt{\dfrac{1-\left( -\dfrac{1}{\sqrt{2}} \right)}{2}}.$
This will lead us to the step where we get $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{1+\dfrac{1}{\sqrt{2}}}{2}}.$
Now consider the terms in the numerator inside the square root on the right-hand side of the above written equation. That is $1+\dfrac{1}{\sqrt{2}}.$ We want to make the denominators of both the summands the same. For that we will take LCM as $\dfrac{\sqrt{2}+1}{\sqrt{2}}.$ Multiply both the numerator and the denominator with $\sqrt{2}$ to get $\dfrac{2+\sqrt{2}}{2}.$
Now we will get $\sin {{67.5}^{\circ }}=\sqrt{\dfrac{\dfrac{2+\sqrt{2}}{2}}{2}}=\sqrt{\dfrac{2+\sqrt{2}}{4}}=\dfrac{\sqrt{2+\sqrt{2}}}{\sqrt{4}}=\dfrac{\sqrt{2+\sqrt{2}}}{2}.$
Hence the exact value of $\sin {{67.5}^{\circ }}=\dfrac{\sqrt{2+\sqrt{2}}}{2}=0.92388.$
Note: The Sine Half-Angle identity is obtained as follows:
$\Rightarrow \cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x=1-{{\sin }^{2}}x-{{\sin }^{2}}x$
$\Rightarrow \cos 2x=1-2{{\sin }^{2}}x$
$\Rightarrow 2{{\sin }^{2}}x=1+\cos 2x$
$\Rightarrow {{\sin }^{2}}x=\dfrac{1+\cos 2x}{2}$
$\Rightarrow \sin x=\pm \sqrt{\dfrac{1+\cos 2x}{2}.}$
Here we convert the given angle in the standard angles such as $\left( 180, 30, 45, 60, 90 … \right)$ by using the half angle identity to make the problem easier.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

State the laws of reflection of light
