Find the exact value of \[\ln {e^2} + \ln {e^5}\].
Answer
Verified
438.3k+ views
Hint:Product property of logarithms should be used in this question that is\[{\log _b}(x) + {\log _b}\left( y \right) = {\log _b}\left( {xy} \right)\]. The power rule is used to multiply the two logarithms and to combine the exponents. The exponential expression should be kept by itself on one side of the equation. The logarithms of both sides of the equation should be obtained and should be solved for variables.
Complete step by step solution:
A logarithm is an exponent that is written in a special way. A logarithm with base \[10\] is a common logarithm.
The product rule states that\[{\log _b}\left( {MN} \right) = {\log _b}\left( M \right) + {\log _b}\left( N \right)\].
This property denotes that logarithm of a product is the sum of the logs of its factors. The two numbers should be multiplied with the same base then the exponents must be added.
The quotient rule states that \[{\log _b}\left( {\frac{M}{N}} \right) = {\log _b}\left( M \right) + {\log_b}\left( N \right)\]
This property denotes that the log of a quotient is the difference of the log of the dividend and the divisor.
To solve this question we use the product property of logarithms that is \[{\log _b}\left( {MN} \right) = {\log _b}\left( M \right) + {\log _b}\left( N \right)\].
Hence multiplying \[{e^2}\]and \[{e^5}\]by adding the exponents we have,
The exact value of \[\ln {e^2} + \ln {e^5}\] is \[7\].
Note: Start by the condensing the log expressions on the left into a single logarithm using the product rule. What we want is to have a single log expression on each side of the equation. Since we want to transform the left side into a single logarithmic equation, then we should use the product rule in reverse to condense it. Always check the solved values with the original logarithmic equations.
Complete step by step solution:
A logarithm is an exponent that is written in a special way. A logarithm with base \[10\] is a common logarithm.
The product rule states that\[{\log _b}\left( {MN} \right) = {\log _b}\left( M \right) + {\log _b}\left( N \right)\].
This property denotes that logarithm of a product is the sum of the logs of its factors. The two numbers should be multiplied with the same base then the exponents must be added.
The quotient rule states that \[{\log _b}\left( {\frac{M}{N}} \right) = {\log _b}\left( M \right) + {\log_b}\left( N \right)\]
This property denotes that the log of a quotient is the difference of the log of the dividend and the divisor.
To solve this question we use the product property of logarithms that is \[{\log _b}\left( {MN} \right) = {\log _b}\left( M \right) + {\log _b}\left( N \right)\].
Hence multiplying \[{e^2}\]and \[{e^5}\]by adding the exponents we have,
The exact value of \[\ln {e^2} + \ln {e^5}\] is \[7\].
Note: Start by the condensing the log expressions on the left into a single logarithm using the product rule. What we want is to have a single log expression on each side of the equation. Since we want to transform the left side into a single logarithmic equation, then we should use the product rule in reverse to condense it. Always check the solved values with the original logarithmic equations.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE