
Find the exact value of expression \[\dfrac{{\sin {{40}^ \circ }}}{{\sin {{80}^ \circ }}} + \dfrac{{\sin {{80}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}\]
Answer
514.2k+ views
Hint: In this we can see trigonometric functions for different values of angles. We can use the following formulas to proceed
$
\sin 2x = 2\sin x\cos x \\
2\cos a\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right) \\
\sin ({90^ \circ } - x) = \cos x \\
$
Complete answer:
Given,
\[\dfrac{{\sin {{40}^ \circ }}}{{\sin {{80}^ \circ }}} + \dfrac{{\sin {{80}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}\]
We can Rewrite the equation in simple form
$
\sin 2x = 2\sin x\cos x \\
= \dfrac{{\sin {{40}^ \circ }}}{{\sin {{80}^ \circ }}} + \dfrac{{\sin {{80}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}} \\
= \dfrac{{\sin {{40}^ \circ }}}{{2\sin {{40}^ \circ }\cos {{40}^ \circ }}} + \dfrac{{2\sin {{20}^ \circ }\cos {{20}^ \circ }\cos {{40}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{2\sin {{20}^ \circ }\cos {{20}^ \circ }}} \\
$
By further solving after cancelling the like terms in numerator and denominator we will get,
$
= \dfrac{1}{{2\cos {{40}^ \circ }}} + \dfrac{{4\cos {{20}^ \circ }\cos {{40}^ \circ }}}{1} - \dfrac{1}{{2\cos {{20}^ \circ }}} \\
= \dfrac{1}{2}\left( {\dfrac{{\cos {{20}^ \circ } - \cos {{40}^ \circ }}}{{\cos {{20}^ \circ }\cos {{40}^ \circ }}}} \right) + 2(\cos {60^ \circ } + \cos {20^ \circ }) \\
$
As we know that the identity,
$ \cos a - \cos b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right)$
We can solve the equation further,
\[ = \dfrac{1}{2}\left( {\dfrac{{2\sin {{30}^ \circ }\sin {{10}^ \circ }}}{{\cos {{20}^ \circ }\cos {{40}^ \circ }}}} \right) + 2(\cos {20^ \circ }) + 1\]
By multiplying numerator and denominator by $ \sin {20^ \circ }$
\[
= = \dfrac{1}{2}\left( {\dfrac{{\sin {{20}^ \circ }\sin {{10}^ \circ }}}{{\sin {{20}^ \circ }\cos {{20}^ \circ }\cos {{40}^ \circ }}}} \right) + 2(\cos {20^ \circ }) + 1 \\
use\,identity, \\
\,\sin 2x = 2\sin x\cos x\,\, \\
= \left( {\dfrac{{2\sin {{10}^ \circ }\sin {{20}^ \circ }}}{{\sin {{80}^ \circ }}}} \right) + 2\cos {20^ \circ } + 1 \\
\]
By using identities of trigonometric function
\[
= \left( {\dfrac{{2\cos {{80}^ \circ }\sin {{20}^ \circ } + 2\cos {{20}^ \circ }\sin {{10}^ \circ }}}{{\sin {{80}^ \circ }}}} \right) + 1 \\
use\,identity,\, \\
\sin ({90^ \circ } - x) = \cos x \\
= \left( {\dfrac{{2\cos {{10}^ \circ }}}{{\sin {{80}^ \circ }}}} \right) + 1 = 3 \\
\]
Hence solution of given problem \[\dfrac{{\sin {{40}^ \circ }}}{{\sin {{80}^ \circ }}} + \dfrac{{\sin {{80}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}\]= 3
Note:
Students must be well equipped with the trigonometric identities they are going to use. Every time by seeing the equation one can understand which equation to reduce in order to get the simpler form.
The reduction of the equation is important to find a step wise solution.
$
\sin 2x = 2\sin x\cos x \\
2\cos a\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right) \\
\sin ({90^ \circ } - x) = \cos x \\
$
Complete answer:
Given,
\[\dfrac{{\sin {{40}^ \circ }}}{{\sin {{80}^ \circ }}} + \dfrac{{\sin {{80}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}\]
We can Rewrite the equation in simple form
$
\sin 2x = 2\sin x\cos x \\
= \dfrac{{\sin {{40}^ \circ }}}{{\sin {{80}^ \circ }}} + \dfrac{{\sin {{80}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}} \\
= \dfrac{{\sin {{40}^ \circ }}}{{2\sin {{40}^ \circ }\cos {{40}^ \circ }}} + \dfrac{{2\sin {{20}^ \circ }\cos {{20}^ \circ }\cos {{40}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{2\sin {{20}^ \circ }\cos {{20}^ \circ }}} \\
$
By further solving after cancelling the like terms in numerator and denominator we will get,
$
= \dfrac{1}{{2\cos {{40}^ \circ }}} + \dfrac{{4\cos {{20}^ \circ }\cos {{40}^ \circ }}}{1} - \dfrac{1}{{2\cos {{20}^ \circ }}} \\
= \dfrac{1}{2}\left( {\dfrac{{\cos {{20}^ \circ } - \cos {{40}^ \circ }}}{{\cos {{20}^ \circ }\cos {{40}^ \circ }}}} \right) + 2(\cos {60^ \circ } + \cos {20^ \circ }) \\
$
As we know that the identity,
$ \cos a - \cos b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right)$
We can solve the equation further,
\[ = \dfrac{1}{2}\left( {\dfrac{{2\sin {{30}^ \circ }\sin {{10}^ \circ }}}{{\cos {{20}^ \circ }\cos {{40}^ \circ }}}} \right) + 2(\cos {20^ \circ }) + 1\]
By multiplying numerator and denominator by $ \sin {20^ \circ }$
\[
= = \dfrac{1}{2}\left( {\dfrac{{\sin {{20}^ \circ }\sin {{10}^ \circ }}}{{\sin {{20}^ \circ }\cos {{20}^ \circ }\cos {{40}^ \circ }}}} \right) + 2(\cos {20^ \circ }) + 1 \\
use\,identity, \\
\,\sin 2x = 2\sin x\cos x\,\, \\
= \left( {\dfrac{{2\sin {{10}^ \circ }\sin {{20}^ \circ }}}{{\sin {{80}^ \circ }}}} \right) + 2\cos {20^ \circ } + 1 \\
\]
By using identities of trigonometric function
\[
= \left( {\dfrac{{2\cos {{80}^ \circ }\sin {{20}^ \circ } + 2\cos {{20}^ \circ }\sin {{10}^ \circ }}}{{\sin {{80}^ \circ }}}} \right) + 1 \\
use\,identity,\, \\
\sin ({90^ \circ } - x) = \cos x \\
= \left( {\dfrac{{2\cos {{10}^ \circ }}}{{\sin {{80}^ \circ }}}} \right) + 1 = 3 \\
\]
Hence solution of given problem \[\dfrac{{\sin {{40}^ \circ }}}{{\sin {{80}^ \circ }}} + \dfrac{{\sin {{80}^ \circ }}}{{\sin {{20}^ \circ }}} - \dfrac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}\]= 3
Note:
Students must be well equipped with the trigonometric identities they are going to use. Every time by seeing the equation one can understand which equation to reduce in order to get the simpler form.
The reduction of the equation is important to find a step wise solution.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

