
How do you find the exact value of \[\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]\]?
Answer
541.2k+ views
Hint: Write \[\arctan \left( -\dfrac{5}{12} \right)={{\tan }^{-1}}\left( \dfrac{-5}{12} \right)\] and use the properties \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\] and \[\csc \left( -\theta \right)=-\csc \theta \] to simplify the given expression. Now, assume a right-angle triangle with its perpendicular as 5 units and base as 12 units. Apply the Pythagoras theorem given as: - \[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\] to determine the hypotenuse. Here, p = perpendicular, b = base and h = hypotenuse. Convert \[{{\tan }^{-1}}\left( \dfrac{5}{12} \right)\] into \[{{\csc }^{-1}}\] function and then apply the formula: - \[\csc \left( {{\csc }^{-1}}x \right)=x\] to get the answer.
Complete step-by-step solution:
Here, we have been provided with the expression \[\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]\] and we are asked to find its value. So, let us assume the value of this expression as ‘E’.
\[\Rightarrow E=\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]\]
Here, \[\arctan \] function means inverse tangent function, so we have,
\[\Rightarrow E=\csc \left[ {{\tan }^{-1}}\left( \dfrac{-5}{12} \right) \right]\]
We know that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\], we get,
\[\Rightarrow E=\csc \left[ -{{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]\]
Now, using the property \[\csc \left( -\theta \right)=-\csc \theta \], we get,
\[\Rightarrow E=-\csc \left[ {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]\]
We know that \[\tan \theta \] = (perpendicular / base) = \[\dfrac{p}{b}\], so we have,
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{p}{b} \right)\]
On comparing the above relation with \[{{\tan }^{-1}}\left( \dfrac{5}{12} \right)\], we have,
\[\Rightarrow \] p = 5 units and b = 12 units
So, applying the Pythagoras theorem given as: - where p = perpendicular, b = base and h = hypotenuse, we get,
\[\Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}}\]
Substituting the values of p and b, we have,
\[\begin{align}
& \Rightarrow {{h}^{2}}={{5}^{2}}+{{12}^{2}} \\
& \Rightarrow {{h}^{2}}=25+144 \\
& \Rightarrow {{h}^{2}}=169 \\
\end{align}\]
Taking square root both the sides, we get,
\[\Rightarrow h=\sqrt{169}\]
\[\Rightarrow h=13\] units
Now, we know that \[\csc \theta \] = (hypotenuse / perpendicular) = \[\dfrac{h}{p}\], so we have,
\[\Rightarrow \theta ={{\csc }^{-1}}\left( \dfrac{h}{p} \right)\]
Therefore, converting \[{{\tan }^{-1}}\left( \dfrac{5}{12} \right)\] into \[{{\csc }^{-1}}\] function, we get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{5}{12} \right)={{\csc }^{-1}}\left( \dfrac{13}{5} \right)\]
Therefore, the given expression becomes,
\[\Rightarrow E=-\csc \left[ {{\csc }^{-1}}\left( \dfrac{13}{5} \right) \right]\]
Using the identity, \[{{\csc }^{-1}}\left( {{\csc }^{-1}}x \right)=x\], we get,
\[\Rightarrow E=-\dfrac{13}{5}\]
Hence, the value of the given expression is \[-\dfrac{13}{5}\].
Note: One may note that there is no option other than converting the given inverse tangent function into cosecant inverse function. We cannot convert it into any other inverse function of trigonometry because then we would not be able to apply the required formula. So, it is necessary to check which function is outside. Here, it was a cosecant function. You must remember the Pythagoras theorem to solve the question.
Complete step-by-step solution:
Here, we have been provided with the expression \[\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]\] and we are asked to find its value. So, let us assume the value of this expression as ‘E’.
\[\Rightarrow E=\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]\]
Here, \[\arctan \] function means inverse tangent function, so we have,
\[\Rightarrow E=\csc \left[ {{\tan }^{-1}}\left( \dfrac{-5}{12} \right) \right]\]
We know that \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\], we get,
\[\Rightarrow E=\csc \left[ -{{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]\]
Now, using the property \[\csc \left( -\theta \right)=-\csc \theta \], we get,
\[\Rightarrow E=-\csc \left[ {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]\]
We know that \[\tan \theta \] = (perpendicular / base) = \[\dfrac{p}{b}\], so we have,
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{p}{b} \right)\]
On comparing the above relation with \[{{\tan }^{-1}}\left( \dfrac{5}{12} \right)\], we have,
\[\Rightarrow \] p = 5 units and b = 12 units
So, applying the Pythagoras theorem given as: - where p = perpendicular, b = base and h = hypotenuse, we get,
\[\Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}}\]
Substituting the values of p and b, we have,
\[\begin{align}
& \Rightarrow {{h}^{2}}={{5}^{2}}+{{12}^{2}} \\
& \Rightarrow {{h}^{2}}=25+144 \\
& \Rightarrow {{h}^{2}}=169 \\
\end{align}\]
Taking square root both the sides, we get,
\[\Rightarrow h=\sqrt{169}\]
\[\Rightarrow h=13\] units
Now, we know that \[\csc \theta \] = (hypotenuse / perpendicular) = \[\dfrac{h}{p}\], so we have,
\[\Rightarrow \theta ={{\csc }^{-1}}\left( \dfrac{h}{p} \right)\]
Therefore, converting \[{{\tan }^{-1}}\left( \dfrac{5}{12} \right)\] into \[{{\csc }^{-1}}\] function, we get,
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{5}{12} \right)={{\csc }^{-1}}\left( \dfrac{13}{5} \right)\]
Therefore, the given expression becomes,
\[\Rightarrow E=-\csc \left[ {{\csc }^{-1}}\left( \dfrac{13}{5} \right) \right]\]
Using the identity, \[{{\csc }^{-1}}\left( {{\csc }^{-1}}x \right)=x\], we get,
\[\Rightarrow E=-\dfrac{13}{5}\]
Hence, the value of the given expression is \[-\dfrac{13}{5}\].
Note: One may note that there is no option other than converting the given inverse tangent function into cosecant inverse function. We cannot convert it into any other inverse function of trigonometry because then we would not be able to apply the required formula. So, it is necessary to check which function is outside. Here, it was a cosecant function. You must remember the Pythagoras theorem to solve the question.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

