
How do you find the exact value of $ \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) $ ?
Answer
556.5k+ views
Hint: We explain the function $ \arcsin \left( x \right) $ . We express the inverse function of tan in the form of $ \arcsin \left( x \right)={{\sin }^{-1}}x $ . We draw the graph of $ \arcsin \left( x \right) $ and the line $ x=\dfrac{1}{3} $ to find the intersection point. Thereafter we take the cos ratio of that angle to find the solution.
Complete step-by-step answer:
The given expression is the inverse function of trigonometric ratio sin.
The arcus function represents the angle which on ratio tan gives the value.
So, $ \arcsin \left( x \right)={{\sin }^{-1}}x $ . If $ \arcsin \left( x \right)=\alpha $ then we can say $ \sin \alpha =x $ .
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where $ \sin \alpha =x $ will be $ n\pi +{{\left( -1 \right)}^{n}}\alpha ,n\in \mathbb{Z} $ .
But for $ \arcsin \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratios sin we have $ -\dfrac{\pi }{2}\le \arcsin \left( x \right)\le \dfrac{\pi }{2} $ .
The graph of the function is
We now place the value of $ x=\dfrac{1}{3} $ in the function of $ \arcsin \left( x \right) $ .
Let the angle be $ \theta $ for which $ \arcsin \left( \dfrac{1}{3} \right)=\theta $ . This gives $ \sin \theta =\dfrac{1}{3} $ .
The value of $ \theta $ for which $ \sin \theta $ is $\dfrac{1}{3} $ is 19.47 degree..
Now we take $ \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\cos \left( {{19.47}^{\circ }} \right)=\dfrac{\sqrt{8}}{3} $ .
Therefore, the value of $ \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) $ is $ \dfrac{\sqrt{8}}{3} $ .
So, the correct answer is “$ \dfrac{\sqrt{8}}{3} $ ”.
Note: We can also apply the trigonometric image form to get the value of $ \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) $ .
It’s given that $ \sin \theta =\dfrac{1}{3} $ and we need to find $ \cos \theta $ . We know $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } $ .
Putting the values, we get $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{\sqrt{8}}{3} $ .
Complete step-by-step answer:
The given expression is the inverse function of trigonometric ratio sin.
The arcus function represents the angle which on ratio tan gives the value.
So, $ \arcsin \left( x \right)={{\sin }^{-1}}x $ . If $ \arcsin \left( x \right)=\alpha $ then we can say $ \sin \alpha =x $ .
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where $ \sin \alpha =x $ will be $ n\pi +{{\left( -1 \right)}^{n}}\alpha ,n\in \mathbb{Z} $ .
But for $ \arcsin \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratios sin we have $ -\dfrac{\pi }{2}\le \arcsin \left( x \right)\le \dfrac{\pi }{2} $ .
The graph of the function is
We now place the value of $ x=\dfrac{1}{3} $ in the function of $ \arcsin \left( x \right) $ .
Let the angle be $ \theta $ for which $ \arcsin \left( \dfrac{1}{3} \right)=\theta $ . This gives $ \sin \theta =\dfrac{1}{3} $ .
The value of $ \theta $ for which $ \sin \theta $ is $\dfrac{1}{3} $ is 19.47 degree..
Now we take $ \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\cos \left( {{19.47}^{\circ }} \right)=\dfrac{\sqrt{8}}{3} $ .
Therefore, the value of $ \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) $ is $ \dfrac{\sqrt{8}}{3} $ .
So, the correct answer is “$ \dfrac{\sqrt{8}}{3} $ ”.
Note: We can also apply the trigonometric image form to get the value of $ \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) $ .
It’s given that $ \sin \theta =\dfrac{1}{3} $ and we need to find $ \cos \theta $ . We know $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } $ .
Putting the values, we get $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{\sqrt{8}}{3} $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

