
How do you find the exact value of $\cos 36$ using the sum and difference, double angle or half angle formulas?
Answer
510.3k+ views
Hint: We first take $\theta =36,A=18$ for the equation $2A=90-3A$. We take sine to use the formulas $\sin 2A=2\sin A\cos A$, $\cos 3A=4{{\cos }^{3}}A-3\cos A$, \[\cos 2\beta =1-2{{\sin }^{2}}\beta \]. We get the value of \[\sin 18=\dfrac{-1+\sqrt{5}}{4}\] which gives the value of $\cos 36$.
Complete step-by-step answer:
We need to find the value of $\cos 36$ using the sum and difference, double angle or half angle formulas.
We first assume $\theta =36,A=18$. Therefore, $5A=5\times 18=90$.
The equation gives $5A=90\Rightarrow 2A=90-3A$.
Now we take the trigonometric ratio sine on both sides $\sin 2A=\sin \left( 90-3A \right)$.
We know the formula of $\sin \left( 90-\alpha \right)=\cos \alpha $.
This gives $\sin 2A=\sin \left( 90-3A \right)=\cos 3A$.
Now we use the formulas of multiple angles where $\sin 2A=2\sin A\cos A$ and $\cos 3A=4{{\cos }^{3}}A-3\cos A$.
We put the values and get
\[\begin{align}
& \sin 2A=\cos 3A \\
& \Rightarrow 2\sin A\cos A=4{{\cos }^{3}}A-3\cos A \\
\end{align}\]
We take all the terms on one side and take $\cos A$ common and get
\[\begin{align}
& 2\sin A\cos A-4{{\cos }^{3}}A+3\cos A=0 \\
& \Rightarrow \cos A\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0 \\
\end{align}\]
We get multiplication of two terms as 0 which gives at least one of them has to be 0.
Now we know that $\cos A=\cos 18\ne 0$.
This gives \[\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0\].
We convert the term \[{{\cos }^{2}}A\] into \[{{\sin }^{2}}A\] using \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\].
\[\begin{align}
& 2\sin A-4{{\cos }^{2}}A+3=0 \\
& \Rightarrow 2\sin A-4\left( 1-{{\sin }^{2}}A \right)+3=0 \\
& \Rightarrow 2\sin A+4{{\sin }^{2}}A-1=0 \\
\end{align}\]
This is quadratic equation of $\sin A$ where we assume $x=\sin A$. We get \[4{{x}^{2}}+2x-1=0\].
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have \[4{{x}^{2}}+2x-1=0\]. The values of a, b, c are $4,2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-2\pm \sqrt{{{2}^{2}}-4\times \left( -1 \right)\times 4}}{2\times 4}=\dfrac{-2\pm \sqrt{20}}{8}=\dfrac{-1\pm \sqrt{5}}{4}\].
Therefore, \[x=\sin A=\sin 18=\dfrac{-1+\sqrt{5}}{4}\]. The value \[x=\dfrac{-1-\sqrt{5}}{4}\] is not considered as the value of $\sin 18>0$.
Now we use \[\cos 2\beta =1-2{{\sin }^{2}}\beta \]. Putting the value of
We get $\cos 36=1-2{{\sin }^{2}}18=1-2{{\left( \dfrac{-1-\sqrt{5}}{4} \right)}^{2}}=1-\dfrac{3-\sqrt{5}}{4}=\dfrac{1+\sqrt{5}}{4}$.
Therefore, the value of $\cos 36$ is $\dfrac{1+\sqrt{5}}{4}$.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Complete step-by-step answer:
We need to find the value of $\cos 36$ using the sum and difference, double angle or half angle formulas.
We first assume $\theta =36,A=18$. Therefore, $5A=5\times 18=90$.
The equation gives $5A=90\Rightarrow 2A=90-3A$.
Now we take the trigonometric ratio sine on both sides $\sin 2A=\sin \left( 90-3A \right)$.
We know the formula of $\sin \left( 90-\alpha \right)=\cos \alpha $.
This gives $\sin 2A=\sin \left( 90-3A \right)=\cos 3A$.
Now we use the formulas of multiple angles where $\sin 2A=2\sin A\cos A$ and $\cos 3A=4{{\cos }^{3}}A-3\cos A$.
We put the values and get
\[\begin{align}
& \sin 2A=\cos 3A \\
& \Rightarrow 2\sin A\cos A=4{{\cos }^{3}}A-3\cos A \\
\end{align}\]
We take all the terms on one side and take $\cos A$ common and get
\[\begin{align}
& 2\sin A\cos A-4{{\cos }^{3}}A+3\cos A=0 \\
& \Rightarrow \cos A\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0 \\
\end{align}\]
We get multiplication of two terms as 0 which gives at least one of them has to be 0.
Now we know that $\cos A=\cos 18\ne 0$.
This gives \[\left( 2\sin A-4{{\cos }^{2}}A+3 \right)=0\].
We convert the term \[{{\cos }^{2}}A\] into \[{{\sin }^{2}}A\] using \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\].
\[\begin{align}
& 2\sin A-4{{\cos }^{2}}A+3=0 \\
& \Rightarrow 2\sin A-4\left( 1-{{\sin }^{2}}A \right)+3=0 \\
& \Rightarrow 2\sin A+4{{\sin }^{2}}A-1=0 \\
\end{align}\]
This is quadratic equation of $\sin A$ where we assume $x=\sin A$. We get \[4{{x}^{2}}+2x-1=0\].
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have \[4{{x}^{2}}+2x-1=0\]. The values of a, b, c are $4,2,-1$ respectively.
We put the values and get $x$ as \[x=\dfrac{-2\pm \sqrt{{{2}^{2}}-4\times \left( -1 \right)\times 4}}{2\times 4}=\dfrac{-2\pm \sqrt{20}}{8}=\dfrac{-1\pm \sqrt{5}}{4}\].
Therefore, \[x=\sin A=\sin 18=\dfrac{-1+\sqrt{5}}{4}\]. The value \[x=\dfrac{-1-\sqrt{5}}{4}\] is not considered as the value of $\sin 18>0$.
Now we use \[\cos 2\beta =1-2{{\sin }^{2}}\beta \]. Putting the value of
We get $\cos 36=1-2{{\sin }^{2}}18=1-2{{\left( \dfrac{-1-\sqrt{5}}{4} \right)}^{2}}=1-\dfrac{3-\sqrt{5}}{4}=\dfrac{1+\sqrt{5}}{4}$.
Therefore, the value of $\cos 36$ is $\dfrac{1+\sqrt{5}}{4}$.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

