
How do you find the exact value of \[\arctan \dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]?
Answer
544.5k+ views
Hint: In the given question, we have been asked to find the exact value of the given inverse trigonometric expression. In order to solve the question, first we will need to simplify the given inverse trigonometric expression. Later by using a trigonometric special arc table or log table we will find the value of each individual term and then by putting these values, we will simplify the expression further. In this way we will get the exact value of the given expression.
Complete step by step solution:
We have given that,
\[\arctan \dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Let,
\[A=\arctan \dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Simplifying the above expression, we obtained
\[\tan A=\dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Now,
Let,
\[x=\arctan \dfrac{9}{7}\Rightarrow \tan x=\dfrac{9}{7}\]
Using the trigonometric special arc table;
\[x={{\left( 52.15 \right)}^{0}}\]
Now,
Let,
\[y=\arctan \dfrac{7}{6}\Rightarrow \tan y=\dfrac{7}{6}\]
Using the trigonometric special arc table;
\[y={{\left( 49.39 \right)}^{0}}\]
Therefore,
\[\Rightarrow \arctan \dfrac{9}{7}-\arctan \dfrac{7}{6}=x-y={{\left( 52.15 \right)}^{0}}-{{\left( 49.39 \right)}^{0}}=\left( 2.73 \right)\]
Now,
Let,
\[u=\arctan \dfrac{5}{3}\Rightarrow \tan u=\dfrac{5}{3}\]
Using the trigonometric special arc table;
\[u={{\left( 59.03 \right)}^{0}}\]
Now,
Let,
\[v=\arctan \dfrac{3}{2}\Rightarrow \tan v=\dfrac{3}{2}\]
Using the trigonometric special arc table;
\[v={{\left( 56.30 \right)}^{0}}\]
Therefore,
\[\Rightarrow \arctan \dfrac{5}{3}-\arctan \dfrac{3}{2}=u-v={{\left( 59.03 \right)}^{0}}-{{\left( 56.30 \right)}^{0}}=\left( 2.73 \right)\]
Now,
We have
\[\tan A=\dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Putting the values from above, we obtained
\[\tan A=\dfrac{2.73}{2.73}=1\]
Using the trigonometric ratios table, we know that
\[\tan \dfrac{\pi }{4}=1\]
Therefore, the exact value of \[\arctan \dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]is \[\dfrac{\pi }{4}\].
Hence, it is the required answer.
Note: In order to solve these types of questions, you should always need to remember the properties of trigonometric and the trigonometric ratios as well. It will make questions easier to solve. It is preferred that while solving these types of questions we should carefully examine the pattern of the given function and then you would apply the formulas according to the pattern observed. As if you directly apply the formula it will create confusion ahead and we will get the wrong answer.
Complete step by step solution:
We have given that,
\[\arctan \dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Let,
\[A=\arctan \dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Simplifying the above expression, we obtained
\[\tan A=\dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Now,
Let,
\[x=\arctan \dfrac{9}{7}\Rightarrow \tan x=\dfrac{9}{7}\]
Using the trigonometric special arc table;
\[x={{\left( 52.15 \right)}^{0}}\]
Now,
Let,
\[y=\arctan \dfrac{7}{6}\Rightarrow \tan y=\dfrac{7}{6}\]
Using the trigonometric special arc table;
\[y={{\left( 49.39 \right)}^{0}}\]
Therefore,
\[\Rightarrow \arctan \dfrac{9}{7}-\arctan \dfrac{7}{6}=x-y={{\left( 52.15 \right)}^{0}}-{{\left( 49.39 \right)}^{0}}=\left( 2.73 \right)\]
Now,
Let,
\[u=\arctan \dfrac{5}{3}\Rightarrow \tan u=\dfrac{5}{3}\]
Using the trigonometric special arc table;
\[u={{\left( 59.03 \right)}^{0}}\]
Now,
Let,
\[v=\arctan \dfrac{3}{2}\Rightarrow \tan v=\dfrac{3}{2}\]
Using the trigonometric special arc table;
\[v={{\left( 56.30 \right)}^{0}}\]
Therefore,
\[\Rightarrow \arctan \dfrac{5}{3}-\arctan \dfrac{3}{2}=u-v={{\left( 59.03 \right)}^{0}}-{{\left( 56.30 \right)}^{0}}=\left( 2.73 \right)\]
Now,
We have
\[\tan A=\dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]
Putting the values from above, we obtained
\[\tan A=\dfrac{2.73}{2.73}=1\]
Using the trigonometric ratios table, we know that
\[\tan \dfrac{\pi }{4}=1\]
Therefore, the exact value of \[\arctan \dfrac{\left( \arctan \left( \dfrac{9}{7} \right)-\arctan \left( \dfrac{7}{6} \right) \right)}{\left( \arctan \left( \dfrac{5}{3} \right)-\arctan \left( \dfrac{3}{2} \right) \right)}\]is \[\dfrac{\pi }{4}\].
Hence, it is the required answer.
Note: In order to solve these types of questions, you should always need to remember the properties of trigonometric and the trigonometric ratios as well. It will make questions easier to solve. It is preferred that while solving these types of questions we should carefully examine the pattern of the given function and then you would apply the formulas according to the pattern observed. As if you directly apply the formula it will create confusion ahead and we will get the wrong answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

