
How do you find the exact minimum value of $f\left( x \right) = {e^x} + {e^{ - 2x}}$ on $\left[ {0,1} \right]$?
Answer
545.7k+ views
Hint: First, we have to find the differentiation of $f$ with respect to $x$ using differentiation rules. Next, find all critical points of $f$ in the interval, i.e., find points $x$ where either $f'\left( x \right) = 0$ or $f$ is not differentiable using exponential and logarithm properties. Next, evaluate the value of $f$ at critical points and at the end points of the interval $\left[ {0,1} \right]$. Next, identify the minimum value of $f$ out of the values calculated. The minimum value will be the absolute minimum (least) value of $f$.
If $f\left( x \right)$and $g\left( x \right)$are differentiable functions and c is a constant.
1. $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$
2. $\dfrac{{d\left( c \right)}}{{dx}} = 0$
3. $\dfrac{d}{{dx}}\left\{ {c \cdot f\left( x \right)} \right\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$
4. $\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
5. $\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
6. $\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Complete step by step answer:
Given function is $f\left( x \right) = {e^x} + {e^{ - 2x}}$.
We have to find the exact minimum value of $f\left( x \right) = {e^x} + {e^{ - 2x}}$ on $\left[ {0,1} \right]$.
First, we have to find the differentiation of $f$ with respect to $x$.
So, differentiating $f$ with respect to $x$, we get
$\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{e^x} + {e^{ - 2x}}} \right)$
Use the property $\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$ in above equation where $f\left( x \right)$and $g\left( x \right)$are differentiable functions.
$ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x}} \right) + \dfrac{d}{{dx}}\left( {{e^{ - 2x}}} \right)$
Use the property $\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$ in above equation.
$ \Rightarrow f'\left( x \right) = {e^x} + {e^{ - 2x}}\dfrac{d}{{dx}}\left( { - 2x} \right)$
Use the property $\dfrac{d}{{dx}}\left\{ {c \cdot f\left( x \right)} \right\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$ in above equation where $f\left( x \right)$is a differentiable function and c is a constant.
$ \Rightarrow f'\left( x \right) = {e^x} - 2{e^{ - 2x}}\dfrac{d}{{dx}}\left( x \right)$
Use the property $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$ in above equation where $f\left( x \right)$is a differentiable function.
$ \Rightarrow f'\left( x \right) = {e^x} - 2{e^{ - 2x}}$
Now, find all critical points of $f$ in the interval, i.e., find points $x$ where either $f'\left( x \right) = 0$ or $f$ is not differentiable.
So, put $f'\left( x \right) = 0$, we get
${e^x} - 2{e^{ - 2x}} = 0$
${e^x} = \dfrac{2}{{{e^{2x}}}}$
Now, use the property ${e^{a + b}} = {e^a}{e^b}$ in the above equation.
${e^{3x}} = 2$
Take logarithm on both sides of the equation.
$\ln \left( {{e^{3x}}} \right) = \ln \left( 2 \right)$
Use property $\ln \left( {{m^n}} \right) = n\ln \left( m \right)$ and $\ln \left( e \right) = 1$ in above equation.
$3x\ln \left( e \right) = \ln \left( 2 \right)$
$ \Rightarrow x = \dfrac{{\ln \left( 2 \right)}}{3}$
or $x = \ln \sqrt[3]{2}$
Thus, $x = \ln \sqrt[3]{2}$ is a critical point of $f$.
Now, we have to evaluate the value of $f$ at critical point and at the end points of the interval $\left[ {0,1} \right]$,
i.e., at $x = 0$, $x = \ln \sqrt[3]{2}$ and $x = 1$
$f\left( 0 \right) = {e^0} + {e^{ - 2 \times 0}} = 1 + 1 = 2$
$f\left( {\ln \sqrt[3]{2}} \right) = {e^{\ln \sqrt[3]{2}}} + {e^{ - 2 \times \ln \sqrt[3]{2}}} = \sqrt[3]{2} + {e^{\ln \dfrac{1}{{{{\left( {\sqrt[3]{2}} \right)}^2}}}}} = \sqrt[3]{2} + \dfrac{1}{{{{\left( {\sqrt[3]{2}} \right)}^2}}} = \sqrt[3]{2} + \dfrac{1}{{\sqrt[3]{4}}} = 1.889881575$
$f\left( 1 \right) = {e^1} + {e^{ - 2 \times 1}} = e + \dfrac{1}{{{e^2}}} = 2.853617112$
Now, identify the maximum and minimum values of $f$ out of the values calculated. The maximum value will be the absolute maximum (greatest) value of $f$ and the minimum value will be the absolute minimum (least) value of $f$.
The absolute maximum value of $f$ on $\left[ {0,1} \right]$ is $2.853617112$, occurring at $x = 1$, and absolute minimum value of $f$ on $\left[ {0,1} \right]$ is $1.889881575$ which occurs at $x = \ln \sqrt[3]{2}$.
Therefore, the exact minimum value of $f\left( x \right) = {e^x} + {e^{ - 2x}}$ on $\left[ {0,1} \right]$ is $\sqrt[3]{2} + \dfrac{1}{{\sqrt[3]{4}}}$ or $1.889881575$.
Note: Algorithm for finding the maximum and the minimum values of a function in a closed interval.
Step 1: Find all critical points $f$ in the interval, i.e., find points $x$ where either $f'\left( x \right) = 0$ or $f$ is not differentiable.
Step 2: Take the end points of the interval.
Step 3: At all these points (listed in Step 1 and 2), calculate the values of $f$.
Step 4: Identify the maximum and minimum values of $f$ out of the values calculated in Step 3. The maximum value will be the absolute maximum (greatest) value of $f$ and the minimum value will be the absolute minimum (least) value of $f$.
If $f\left( x \right)$and $g\left( x \right)$are differentiable functions and c is a constant.
1. $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$
2. $\dfrac{{d\left( c \right)}}{{dx}} = 0$
3. $\dfrac{d}{{dx}}\left\{ {c \cdot f\left( x \right)} \right\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$
4. $\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
5. $\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
6. $\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Complete step by step answer:
Given function is $f\left( x \right) = {e^x} + {e^{ - 2x}}$.
We have to find the exact minimum value of $f\left( x \right) = {e^x} + {e^{ - 2x}}$ on $\left[ {0,1} \right]$.
First, we have to find the differentiation of $f$ with respect to $x$.
So, differentiating $f$ with respect to $x$, we get
$\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{e^x} + {e^{ - 2x}}} \right)$
Use the property $\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$ in above equation where $f\left( x \right)$and $g\left( x \right)$are differentiable functions.
$ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x}} \right) + \dfrac{d}{{dx}}\left( {{e^{ - 2x}}} \right)$
Use the property $\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$ in above equation.
$ \Rightarrow f'\left( x \right) = {e^x} + {e^{ - 2x}}\dfrac{d}{{dx}}\left( { - 2x} \right)$
Use the property $\dfrac{d}{{dx}}\left\{ {c \cdot f\left( x \right)} \right\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$ in above equation where $f\left( x \right)$is a differentiable function and c is a constant.
$ \Rightarrow f'\left( x \right) = {e^x} - 2{e^{ - 2x}}\dfrac{d}{{dx}}\left( x \right)$
Use the property $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$ in above equation where $f\left( x \right)$is a differentiable function.
$ \Rightarrow f'\left( x \right) = {e^x} - 2{e^{ - 2x}}$
Now, find all critical points of $f$ in the interval, i.e., find points $x$ where either $f'\left( x \right) = 0$ or $f$ is not differentiable.
So, put $f'\left( x \right) = 0$, we get
${e^x} - 2{e^{ - 2x}} = 0$
${e^x} = \dfrac{2}{{{e^{2x}}}}$
Now, use the property ${e^{a + b}} = {e^a}{e^b}$ in the above equation.
${e^{3x}} = 2$
Take logarithm on both sides of the equation.
$\ln \left( {{e^{3x}}} \right) = \ln \left( 2 \right)$
Use property $\ln \left( {{m^n}} \right) = n\ln \left( m \right)$ and $\ln \left( e \right) = 1$ in above equation.
$3x\ln \left( e \right) = \ln \left( 2 \right)$
$ \Rightarrow x = \dfrac{{\ln \left( 2 \right)}}{3}$
or $x = \ln \sqrt[3]{2}$
Thus, $x = \ln \sqrt[3]{2}$ is a critical point of $f$.
Now, we have to evaluate the value of $f$ at critical point and at the end points of the interval $\left[ {0,1} \right]$,
i.e., at $x = 0$, $x = \ln \sqrt[3]{2}$ and $x = 1$
$f\left( 0 \right) = {e^0} + {e^{ - 2 \times 0}} = 1 + 1 = 2$
$f\left( {\ln \sqrt[3]{2}} \right) = {e^{\ln \sqrt[3]{2}}} + {e^{ - 2 \times \ln \sqrt[3]{2}}} = \sqrt[3]{2} + {e^{\ln \dfrac{1}{{{{\left( {\sqrt[3]{2}} \right)}^2}}}}} = \sqrt[3]{2} + \dfrac{1}{{{{\left( {\sqrt[3]{2}} \right)}^2}}} = \sqrt[3]{2} + \dfrac{1}{{\sqrt[3]{4}}} = 1.889881575$
$f\left( 1 \right) = {e^1} + {e^{ - 2 \times 1}} = e + \dfrac{1}{{{e^2}}} = 2.853617112$
Now, identify the maximum and minimum values of $f$ out of the values calculated. The maximum value will be the absolute maximum (greatest) value of $f$ and the minimum value will be the absolute minimum (least) value of $f$.
The absolute maximum value of $f$ on $\left[ {0,1} \right]$ is $2.853617112$, occurring at $x = 1$, and absolute minimum value of $f$ on $\left[ {0,1} \right]$ is $1.889881575$ which occurs at $x = \ln \sqrt[3]{2}$.
Therefore, the exact minimum value of $f\left( x \right) = {e^x} + {e^{ - 2x}}$ on $\left[ {0,1} \right]$ is $\sqrt[3]{2} + \dfrac{1}{{\sqrt[3]{4}}}$ or $1.889881575$.
Note: Algorithm for finding the maximum and the minimum values of a function in a closed interval.
Step 1: Find all critical points $f$ in the interval, i.e., find points $x$ where either $f'\left( x \right) = 0$ or $f$ is not differentiable.
Step 2: Take the end points of the interval.
Step 3: At all these points (listed in Step 1 and 2), calculate the values of $f$.
Step 4: Identify the maximum and minimum values of $f$ out of the values calculated in Step 3. The maximum value will be the absolute maximum (greatest) value of $f$ and the minimum value will be the absolute minimum (least) value of $f$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

