
How do you find the exact functional value $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$using cosine sum or difference identity?
Answer
543.9k+ views
Hint: In order to determine the exact value of $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$, first find out the value of$\tan \left( {\dfrac{{5\pi }}{{12}}} \right)$by splitting the angle $\dfrac{{5\pi }}{{12}}$as $\dfrac{\pi }{6} + \dfrac{\pi }{4}$ . Now apply the sum of angle formula of tangent $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ to find the value of$\tan \left( {\dfrac{{5\pi }}{{12}}} \right)$. Now using the property of tangent as $\tan \left( { - \theta } \right) = - \tan \left( \theta \right)$,you’ll get your required result.
Formula Used:
${\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB$
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$(a - b)(a + b) = {a^2} - {b^2}$
Complete step-by-step solution:
In order the find the exact value of $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$, We will be first finding the value of $\tan \left( {\dfrac{{5\pi }}{{12}}} \right)$and to do so we have to find the two angles whose either Sum or difference is $\dfrac{{5\pi }}{{12}}$
We only know the exact value of tangent at angles $0,\dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{3},\dfrac{\pi }{2}$.
Now have to find such combination of two angles from the above angles, so that the sum or difference is a $\dfrac{{5\pi }}{{12}}$.
We can write $\dfrac{{5\pi }}{{12}}$as $\dfrac{\pi }{6} + \dfrac{\pi }{4}$
SO we get
$ \Rightarrow \tan \left( {\dfrac{{5\pi }}{{12}}} \right) = \tan \left( {\dfrac{\pi }{6} + \dfrac{\pi }{4}} \right)$
Now Using sum of angle formula for tangent as $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$,by considering A as $\dfrac{\pi }{6}$and B as $\dfrac{\pi }{4}$.
We get,
$\Rightarrow \tan \left( {\dfrac{\pi }{6} + \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{6}} \right) + \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 - \tan \left( {\dfrac{\pi }{6}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}$
Since, As we know $\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{3}$and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$.Putting these values in the above equation we get
$\Rightarrow \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 - \left( {\dfrac{{\sqrt 3 }}{3}} \right)\left( 1 \right)}}$
To simplify the above, multiply and divide the above equation with $1 + \dfrac{{\sqrt 3 }}{3}$, we get
$
\Rightarrow \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 - \dfrac{{\sqrt 3 }}{3}}} \times \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 + \dfrac{{\sqrt 3 }}{3}}} \\
\Rightarrow \dfrac{{{{\left( {1 + \dfrac{{\sqrt 3 }}{3}} \right)}^2}}}{{\left( {1 - \dfrac{{\sqrt 3 }}{3}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{3}} \right)}} \\
$
Now apply the formula of ${\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB$in the numerator to expand and rewrite the denominator using identity $\left( {A - B} \right)\left( {A + B} \right) = {A^2} - {B^2}$. We get our equation as
\[
\Rightarrow \dfrac{{1 + \dfrac{{2\sqrt 3 }}{3} + \dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} \\
\Rightarrow \dfrac{{\dfrac{{2\sqrt 3 }}{3} + \dfrac{4}{3}}}{{\dfrac{2}{3}}} \\
\Rightarrow \dfrac{3}{2}\times \left( {\dfrac{{2\sqrt 3 }}{3} + \dfrac{4}{3}} \right) \\
\Rightarrow \dfrac{6 \sqrt{3}}{6} + \dfrac{12}{6}
\]
Simplifying the above further we get
$\tan \left( {\dfrac{{5\pi }}{{12}}} \right) = 2 + \sqrt 3 $
Hence, we have obtained the value of $\tan \left( {\dfrac{{5\pi }}{{12}}} \right) = 2 + \sqrt 3 $
Using the property of tangent that $\tan \left( { - \theta } \right) = - \tan \left( \theta \right)$, we can write $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$as
$\Rightarrow \tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right) = - \left( {2 + \sqrt 3 } \right) = - 2 - \sqrt 3 $
Therefore, the exact functional value of $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$is equal to $ - 2 - \sqrt 3 $.
Additional Information:
1. Periodic Function= A function $f(x)$ is said to be a periodic function if there exists a real number T > 0 such that $f(x + T) = f(x)$ for all x.
If T is the smallest positive real number such that $f(x + T) = f(x)$ for all x, then T is called the fundamental period of $f(x)$ .
Since $\sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $\theta $ and n$ \in $N.
2. Even Function – A function $f(x)$ is said to be an even function ,if $f( - x) = f(x)$for all x in its domain.
Odd Function – A function $f(x)$ is said to be an even function ,if $f( - x) = - f(x)$for all x in its domain.
We know that $\sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore,$\sin \theta $ and $\tan \theta $ and their reciprocals,$\csc \theta $ and $\cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Note:
1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in the 1st and 3rd quadrant and negative in 2nd and 4th quadrant.
Formula Used:
${\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB$
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$(a - b)(a + b) = {a^2} - {b^2}$
Complete step-by-step solution:
In order the find the exact value of $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$, We will be first finding the value of $\tan \left( {\dfrac{{5\pi }}{{12}}} \right)$and to do so we have to find the two angles whose either Sum or difference is $\dfrac{{5\pi }}{{12}}$
We only know the exact value of tangent at angles $0,\dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{3},\dfrac{\pi }{2}$.
Now have to find such combination of two angles from the above angles, so that the sum or difference is a $\dfrac{{5\pi }}{{12}}$.
We can write $\dfrac{{5\pi }}{{12}}$as $\dfrac{\pi }{6} + \dfrac{\pi }{4}$
SO we get
$ \Rightarrow \tan \left( {\dfrac{{5\pi }}{{12}}} \right) = \tan \left( {\dfrac{\pi }{6} + \dfrac{\pi }{4}} \right)$
Now Using sum of angle formula for tangent as $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$,by considering A as $\dfrac{\pi }{6}$and B as $\dfrac{\pi }{4}$.
We get,
$\Rightarrow \tan \left( {\dfrac{\pi }{6} + \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{6}} \right) + \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 - \tan \left( {\dfrac{\pi }{6}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}$
Since, As we know $\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{3}$and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$.Putting these values in the above equation we get
$\Rightarrow \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 - \left( {\dfrac{{\sqrt 3 }}{3}} \right)\left( 1 \right)}}$
To simplify the above, multiply and divide the above equation with $1 + \dfrac{{\sqrt 3 }}{3}$, we get
$
\Rightarrow \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 - \dfrac{{\sqrt 3 }}{3}}} \times \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 + \dfrac{{\sqrt 3 }}{3}}} \\
\Rightarrow \dfrac{{{{\left( {1 + \dfrac{{\sqrt 3 }}{3}} \right)}^2}}}{{\left( {1 - \dfrac{{\sqrt 3 }}{3}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{3}} \right)}} \\
$
Now apply the formula of ${\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB$in the numerator to expand and rewrite the denominator using identity $\left( {A - B} \right)\left( {A + B} \right) = {A^2} - {B^2}$. We get our equation as
\[
\Rightarrow \dfrac{{1 + \dfrac{{2\sqrt 3 }}{3} + \dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} \\
\Rightarrow \dfrac{{\dfrac{{2\sqrt 3 }}{3} + \dfrac{4}{3}}}{{\dfrac{2}{3}}} \\
\Rightarrow \dfrac{3}{2}\times \left( {\dfrac{{2\sqrt 3 }}{3} + \dfrac{4}{3}} \right) \\
\Rightarrow \dfrac{6 \sqrt{3}}{6} + \dfrac{12}{6}
\]
Simplifying the above further we get
$\tan \left( {\dfrac{{5\pi }}{{12}}} \right) = 2 + \sqrt 3 $
Hence, we have obtained the value of $\tan \left( {\dfrac{{5\pi }}{{12}}} \right) = 2 + \sqrt 3 $
Using the property of tangent that $\tan \left( { - \theta } \right) = - \tan \left( \theta \right)$, we can write $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$as
$\Rightarrow \tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right) = - \left( {2 + \sqrt 3 } \right) = - 2 - \sqrt 3 $
Therefore, the exact functional value of $\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)$is equal to $ - 2 - \sqrt 3 $.
Additional Information:
1. Periodic Function= A function $f(x)$ is said to be a periodic function if there exists a real number T > 0 such that $f(x + T) = f(x)$ for all x.
If T is the smallest positive real number such that $f(x + T) = f(x)$ for all x, then T is called the fundamental period of $f(x)$ .
Since $\sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $\theta $ and n$ \in $N.
2. Even Function – A function $f(x)$ is said to be an even function ,if $f( - x) = f(x)$for all x in its domain.
Odd Function – A function $f(x)$ is said to be an even function ,if $f( - x) = - f(x)$for all x in its domain.
We know that $\sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore,$\sin \theta $ and $\tan \theta $ and their reciprocals,$\csc \theta $ and $\cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Note:
1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in the 1st and 3rd quadrant and negative in 2nd and 4th quadrant.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

