
How do you find the exact functional value of $\sin {75^ \circ }$ by using the cosine sum or difference identity?
Answer
558k+ views
Hint: We will use the cosine sum and difference formula to find the exact functional value of $\sin {75^ \circ }$. So, here we will use $\sin \left( {A + B} \right)$ i.e., sine sum identity for $\sin \left( {A - B} \right)$ i.e., sine difference identity which are defined as $\sin A\cos B + \cos A\sin B$ and $\sin A\cos B - \cos A\sin B$ using one of these we will get the required value.
Complete Step by Step Solution:
We’ll solve this by using two methods one by using the sin sum identity and another by using the sine difference identity.
Method – 1: Using the sine sum identity:
We have to find the value of $\sin {75^ \circ }$. So, we can also write $\sin {75^ \circ }$ as –
$\sin {75^ \circ } = \sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$
We know that, sine sum identity is –
$\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
Using the above identity for $\sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$ , we get –
Here, $A = {45^ \circ }$ and $B = {30^ \circ }$. Substituting these values in the identity, we get –
$ \Rightarrow \sin \left( {45 + 30} \right) = \sin 45\cos 30 + \cos 45\sin 30$
By using the specified sine and cosine angle i.e., $\sin 45 = \dfrac{1}{{\sqrt 2 }},\cos 30 = \dfrac{{\sqrt 3 }}{2},\cos 45 = \dfrac{1}{{\sqrt 2 }}$ and $\sin 30 = \dfrac{1}{2}$ , we get –
$\therefore \sin \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
On simplification, we get –
$ \Rightarrow \sin 75 = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \sin 75 = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Hence, the exact functional value of $\sin 75$ is $\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$.
Method – 2: Using the sine difference identity:
We have to find the value of $\sin {75^ \circ }$. So, we can also write $\sin {75^ \circ }$ as –
$\sin {75^ \circ } = \sin \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$
We know that, sine sum identity is –
$\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
Using the above identity for $\sin \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$ , we get –
Here, $A = {135^ \circ }$ and $B = {60^ \circ }$. Substituting these values in the identity, we get –
\[ \Rightarrow \sin \left( {135 + 60} \right) = \sin 135\cos 60 - \cos 135\sin 60\]
By using the specified sine and cosine angle i.e., $\sin 135 = \dfrac{1}{{\sqrt 2 }},\cos 60 = \dfrac{1}{2},\cos 135 = \dfrac{{ - 1}}{{\sqrt 2 }}$ and $\sin 60 = \dfrac{{\sqrt 3 }}{2}$ , we get –
$\therefore \sin \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} - \dfrac{{ - 1}}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2}$
On simplification, we get –
$ \Rightarrow \sin 75 = \dfrac{1}{{2\sqrt 2 }} + \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \sin 75 = \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}$
Hence, the exact functional value of $\sin 75$ is $\dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}$.
Note: The values of sine and cosine can be determined by using the other methods such as double angle formula, half-angle formula. In this question, we found the value of $\sin 75$ by using the sine sum and difference formula. Here, we used the value of trigonometry ratios of standard angles. That’s why we can determine the solution to the question.
Complete Step by Step Solution:
We’ll solve this by using two methods one by using the sin sum identity and another by using the sine difference identity.
Method – 1: Using the sine sum identity:
We have to find the value of $\sin {75^ \circ }$. So, we can also write $\sin {75^ \circ }$ as –
$\sin {75^ \circ } = \sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$
We know that, sine sum identity is –
$\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
Using the above identity for $\sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$ , we get –
Here, $A = {45^ \circ }$ and $B = {30^ \circ }$. Substituting these values in the identity, we get –
$ \Rightarrow \sin \left( {45 + 30} \right) = \sin 45\cos 30 + \cos 45\sin 30$
By using the specified sine and cosine angle i.e., $\sin 45 = \dfrac{1}{{\sqrt 2 }},\cos 30 = \dfrac{{\sqrt 3 }}{2},\cos 45 = \dfrac{1}{{\sqrt 2 }}$ and $\sin 30 = \dfrac{1}{2}$ , we get –
$\therefore \sin \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
On simplification, we get –
$ \Rightarrow \sin 75 = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \sin 75 = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Hence, the exact functional value of $\sin 75$ is $\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$.
Method – 2: Using the sine difference identity:
We have to find the value of $\sin {75^ \circ }$. So, we can also write $\sin {75^ \circ }$ as –
$\sin {75^ \circ } = \sin \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$
We know that, sine sum identity is –
$\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
Using the above identity for $\sin \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$ , we get –
Here, $A = {135^ \circ }$ and $B = {60^ \circ }$. Substituting these values in the identity, we get –
\[ \Rightarrow \sin \left( {135 + 60} \right) = \sin 135\cos 60 - \cos 135\sin 60\]
By using the specified sine and cosine angle i.e., $\sin 135 = \dfrac{1}{{\sqrt 2 }},\cos 60 = \dfrac{1}{2},\cos 135 = \dfrac{{ - 1}}{{\sqrt 2 }}$ and $\sin 60 = \dfrac{{\sqrt 3 }}{2}$ , we get –
$\therefore \sin \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} - \dfrac{{ - 1}}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2}$
On simplification, we get –
$ \Rightarrow \sin 75 = \dfrac{1}{{2\sqrt 2 }} + \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \sin 75 = \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}$
Hence, the exact functional value of $\sin 75$ is $\dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}$.
Note: The values of sine and cosine can be determined by using the other methods such as double angle formula, half-angle formula. In this question, we found the value of $\sin 75$ by using the sine sum and difference formula. Here, we used the value of trigonometry ratios of standard angles. That’s why we can determine the solution to the question.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

