
How do you find the exact functional value of $\sin 405^\circ + \sin 120^\circ $ using the cosine sum or difference identity?
Answer
476.1k+ views
Hint: Here we have to find the exact functional value of $\sin 405^\circ + \sin 120^\circ $. To solve this trigonometric function first we will split each angle and then we will use the trigonometric identity $\sin (A + B) = \sin A\cos B + \sin B\cos A$. After applying this trigonometric identity we will put the values of angles of $\sin $ and $\cos $ such as $\sin (360^\circ ) = 0,\,\,\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }},\,\,\cos (360^\circ ) = 1,\,\,\cos (45^\circ ) = \dfrac{1}{{\sqrt 2 }}$.
Complete step by step answer:
To find the exact functional value of $\sin 405^\circ + \sin 120^\circ $. We will split the angles in the angles whose values are known to us.So, we can write,
$\sin 405^\circ = \sin (360^\circ + 45^\circ )$
We know that $\sin (A + B) = \sin A\cos B + \sin B\cos A$
Using the above formula to evaluate the value of $\sin 405^\circ $. We get,
$\sin (360^\circ + 45^\circ ) = \sin 360^\circ \cos 45^\circ + \sin 45^\circ \cos 360^\circ $
We know that,
$\sin (360^\circ ) = 0,\,\,\sin (45^\circ ) \\
\Rightarrow \sin (360^\circ ) = \dfrac{1}{{\sqrt 2 }},\,\,\cos (360^\circ ) \\
\Rightarrow \sin (360^\circ ) = 1,\,\,\cos (45^\circ ) \\
\Rightarrow \sin (360^\circ ) = \dfrac{1}{{\sqrt 2 }}$
Putting these values in the above equation. We get,
$ \Rightarrow \sin (360^\circ + 45^\circ ) = 0 \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \times 1$
$ \Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{1}{{\sqrt 2 }}$
Rationalizing the above value. We get,
$ \Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{{1 \times \sqrt 2 }}{{\sqrt 2 \times \sqrt 2 }} \\
\Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{{\sqrt 2 }}{2}$
Hence, the value of $\sin (405^\circ ) = \dfrac{{\sqrt 2 }}{2}$
Now, we will evaluate the value of value of $\sin (120^\circ )$
We can write $\sin (120^\circ ) = \sin (90^\circ + 30^\circ )$
Therefore, $\sin (90^\circ + 30^\circ ) = \sin 90^\circ \cos 30^\circ + \sin 30^\circ \cos 90^\circ $
We know that $\sin (90^\circ ) = 1,\,\,\sin (30^\circ ) = \dfrac{1}{2},\,\,\cos (90) = 0,\,\,\cos (30^\circ ) = \dfrac{{\sqrt 3 }}{2}$
Putting these values in the above equation. We get,
$ \Rightarrow $$\sin (90^\circ + 30^\circ ) = 1 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times 0$
$ \Rightarrow \sin (90^\circ + 30^\circ ) = \dfrac{{\sqrt 3 }}{2}$
Hence, the value of $\sin (120^\circ )$$ = \dfrac{{\sqrt 3 }}{2}$
Now put the values of $\sin 405^\circ $ and $\sin (120^\circ )$ in $\sin 405^\circ + \sin 120^\circ $ to calculate the exact value.
So, $\sin 405^\circ + \sin 120^\circ = \dfrac{{\sqrt 2 }}{2} + \dfrac{{\sqrt 3 }}{2}$
Hence, $\sin 405^\circ + \sin 120^\circ = \dfrac{{\sqrt 2 + \sqrt 3 }}{2}$.
Note: Some students are confused between trigonometric identities such as $\sin (A + B)$ and $\sin A + \operatorname{Sin} B$. These both are different identities in one there is only a sum of angles and in second there is a sum of angles of $\sin $. In this question we can also use the identity $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ to find the exact value of the trigonometric function.
Complete step by step answer:
To find the exact functional value of $\sin 405^\circ + \sin 120^\circ $. We will split the angles in the angles whose values are known to us.So, we can write,
$\sin 405^\circ = \sin (360^\circ + 45^\circ )$
We know that $\sin (A + B) = \sin A\cos B + \sin B\cos A$
Using the above formula to evaluate the value of $\sin 405^\circ $. We get,
$\sin (360^\circ + 45^\circ ) = \sin 360^\circ \cos 45^\circ + \sin 45^\circ \cos 360^\circ $
We know that,
$\sin (360^\circ ) = 0,\,\,\sin (45^\circ ) \\
\Rightarrow \sin (360^\circ ) = \dfrac{1}{{\sqrt 2 }},\,\,\cos (360^\circ ) \\
\Rightarrow \sin (360^\circ ) = 1,\,\,\cos (45^\circ ) \\
\Rightarrow \sin (360^\circ ) = \dfrac{1}{{\sqrt 2 }}$
Putting these values in the above equation. We get,
$ \Rightarrow \sin (360^\circ + 45^\circ ) = 0 \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \times 1$
$ \Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{1}{{\sqrt 2 }}$
Rationalizing the above value. We get,
$ \Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{{1 \times \sqrt 2 }}{{\sqrt 2 \times \sqrt 2 }} \\
\Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{{\sqrt 2 }}{2}$
Hence, the value of $\sin (405^\circ ) = \dfrac{{\sqrt 2 }}{2}$
Now, we will evaluate the value of value of $\sin (120^\circ )$
We can write $\sin (120^\circ ) = \sin (90^\circ + 30^\circ )$
Therefore, $\sin (90^\circ + 30^\circ ) = \sin 90^\circ \cos 30^\circ + \sin 30^\circ \cos 90^\circ $
We know that $\sin (90^\circ ) = 1,\,\,\sin (30^\circ ) = \dfrac{1}{2},\,\,\cos (90) = 0,\,\,\cos (30^\circ ) = \dfrac{{\sqrt 3 }}{2}$
Putting these values in the above equation. We get,
$ \Rightarrow $$\sin (90^\circ + 30^\circ ) = 1 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times 0$
$ \Rightarrow \sin (90^\circ + 30^\circ ) = \dfrac{{\sqrt 3 }}{2}$
Hence, the value of $\sin (120^\circ )$$ = \dfrac{{\sqrt 3 }}{2}$
Now put the values of $\sin 405^\circ $ and $\sin (120^\circ )$ in $\sin 405^\circ + \sin 120^\circ $ to calculate the exact value.
So, $\sin 405^\circ + \sin 120^\circ = \dfrac{{\sqrt 2 }}{2} + \dfrac{{\sqrt 3 }}{2}$
Hence, $\sin 405^\circ + \sin 120^\circ = \dfrac{{\sqrt 2 + \sqrt 3 }}{2}$.
Note: Some students are confused between trigonometric identities such as $\sin (A + B)$ and $\sin A + \operatorname{Sin} B$. These both are different identities in one there is only a sum of angles and in second there is a sum of angles of $\sin $. In this question we can also use the identity $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ to find the exact value of the trigonometric function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

