
How do you find the exact functional value $cos\, 15^\circ$ using the cosine sum or difference identity?
Answer
557.7k+ views
Hint: When we use any trigonometric sum or difference identity, we must assume only that angles ($a$ and $b$) in the identity, of whose trigonometric ratios are known to us.
Complete step by step solution:
As we have to find the value of $\cos {15^o}$, we will use the cosine difference identity, i.e.
$\cos (a - b) = \cos a\cos b + \sin a\sin b$
Let $a = {45^o}$ and $b = {30^o}$ as the value of $\cos a$, $\cos b$, $\sin a$ and $\sin b$ are known to us. We will substitute the value of and in the cosine difference identity so that it becomes,
$
\Rightarrow \cos (a - b) = \cos a\cos b + \sin a\sin b \\
\Rightarrow \cos ({45^o} - {30^o}) = \cos {45^o}\cos {30^o} + \sin {45^o}\sin {30^o} \\
\\
$
We have,
$\cos {45^o} = \dfrac{1}{{\sqrt 2 }}$; $\sin {45^o} = \dfrac{1}{{\sqrt 2 }}$; $\cos {30^o} = \dfrac{{\sqrt 3 }}{2}$; $\sin {30^o} = \dfrac{1}{2}$
On using these values, we get
$ \Rightarrow \cos {15^o} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On multiplying the values, we get
$ \Rightarrow \cos {15^o} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ as the denominator and further simplifying, we get
$ \Rightarrow \cos {15^o} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Substituting $\sqrt 3 = 1.732$ and $\sqrt 2 = 1.414$ above, we have
$ \Rightarrow \cos {15^o} = \dfrac{{1.732 + 1}}{{2 \times 1.414}}$
$ \Rightarrow \cos {15^o} = \dfrac{{2.732}}{{2.828}}$
$ \Rightarrow \cos {15^o} = 0.966$
Hence, the exact functional value of $\cos {15^o}$ found using cosine difference identity is $0.966$.
Note: In case we don’t know the cosine sum or difference identity, we can use the sine sum or difference identity. But for this we will have to convert cosine angle into sine angle using complementary angles formulae, i.e. $\cos \theta = \sin (90 - \theta )$. In the given question, $\cos {15^o} = \sin ({90^o} - {15^o}) = \sin {75^o}$. We can now use the sine sum identity $\sin (a + b) = \sin a\cos b + \sin b\cos a$ to find the value of $\sin {75^o}$, where $a = {45^o}$ and $b = {30^o}$.
Complete step by step solution:
As we have to find the value of $\cos {15^o}$, we will use the cosine difference identity, i.e.
$\cos (a - b) = \cos a\cos b + \sin a\sin b$
Let $a = {45^o}$ and $b = {30^o}$ as the value of $\cos a$, $\cos b$, $\sin a$ and $\sin b$ are known to us. We will substitute the value of and in the cosine difference identity so that it becomes,
$
\Rightarrow \cos (a - b) = \cos a\cos b + \sin a\sin b \\
\Rightarrow \cos ({45^o} - {30^o}) = \cos {45^o}\cos {30^o} + \sin {45^o}\sin {30^o} \\
\\
$
We have,
$\cos {45^o} = \dfrac{1}{{\sqrt 2 }}$; $\sin {45^o} = \dfrac{1}{{\sqrt 2 }}$; $\cos {30^o} = \dfrac{{\sqrt 3 }}{2}$; $\sin {30^o} = \dfrac{1}{2}$
On using these values, we get
$ \Rightarrow \cos {15^o} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On multiplying the values, we get
$ \Rightarrow \cos {15^o} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ as the denominator and further simplifying, we get
$ \Rightarrow \cos {15^o} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Substituting $\sqrt 3 = 1.732$ and $\sqrt 2 = 1.414$ above, we have
$ \Rightarrow \cos {15^o} = \dfrac{{1.732 + 1}}{{2 \times 1.414}}$
$ \Rightarrow \cos {15^o} = \dfrac{{2.732}}{{2.828}}$
$ \Rightarrow \cos {15^o} = 0.966$
Hence, the exact functional value of $\cos {15^o}$ found using cosine difference identity is $0.966$.
Note: In case we don’t know the cosine sum or difference identity, we can use the sine sum or difference identity. But for this we will have to convert cosine angle into sine angle using complementary angles formulae, i.e. $\cos \theta = \sin (90 - \theta )$. In the given question, $\cos {15^o} = \sin ({90^o} - {15^o}) = \sin {75^o}$. We can now use the sine sum identity $\sin (a + b) = \sin a\cos b + \sin b\cos a$ to find the value of $\sin {75^o}$, where $a = {45^o}$ and $b = {30^o}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

