
Find the equivalent emf of the three batteries as shown in the figure below.
Answer
553.2k+ views
Hint: We can find the equivalent emf due to the combination of batteries by substituting in appropriate relations for series and parallel combinations. We have both the combination, so we have to find the equivalent emf through many steps starting from basic equations.
Complete answer:
Let us consider a combination of two batteries of emf \[{{\varepsilon }_{1}}\text{ and }{{\varepsilon }_{2}}\] connected in series with an internal resistance of r1 and r2 respectively.
We know that in a series combination the current remains a constant, that gives the following relation –
\[\begin{align}
& {{\varepsilon }_{1}}={{V}_{1}}-I{{r}_{1}} \\
& \Rightarrow {{V}_{1}}={{\varepsilon }_{1}}+I{{r}_{1}} \\
& \text{and, } \\
& {{\varepsilon }_{2}}={{V}_{2}}-I{{r}_{2}} \\
& \Rightarrow {{V}_{2}}={{\varepsilon }_{2}}+I{{r}_{2}} \\
& \Rightarrow V={{V}_{1}}+{{V}_{2}} \\
& \therefore V=({{\varepsilon }_{1}}+{{\varepsilon }_{2}})+I({{r}_{1}}+{{r}_{2}}) \\
& \Rightarrow {{\varepsilon }_{eq}}={{\varepsilon }_{1}}+{{\varepsilon }_{2}} \\
\end{align}\]
Similarly, if we connect the given batteries parallel we get –
\[\begin{align}
& {{\varepsilon }_{1}}=V-{{I}_{1}}{{r}_{1}} \\
& \Rightarrow {{I}_{1}}=\dfrac{{{\varepsilon }_{1}}-V}{{{r}_{1}}} \\
& \text{and, } \\
& {{\varepsilon }_{2}}=V-{{I}_{1}}{{r}_{2}} \\
& \Rightarrow {{I}_{2}}=\dfrac{{{\varepsilon }_{2}}-V}{{{r}_{2}}} \\
\end{align}\]
We know that in a parallel combination, the voltage is constant and the current is distributed among the two parallel cells according to their emf and internal resistance as -
\[\begin{align}
& \Rightarrow I={{I}_{1}}+{{I}_{2}} \\
& \therefore I=\dfrac{{{\varepsilon }_{1}}-V}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}-V}{{{r}_{2}}} \\
& I=\dfrac{{{\varepsilon }_{1}}}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}}{{{r}_{2}}}-V(\dfrac{1}{{{r}_{1}}}+\dfrac{1}{{{r}_{2}}}) \\
& \Rightarrow V=-[I-(\dfrac{{{\varepsilon }_{1}}}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}}{{{r}_{2}}})]\dfrac{{{r}_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}} \\
& V=(\dfrac{{{\varepsilon }_{1}}}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}}{{{r}_{2}}})(\dfrac{{{r}_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}})-I\dfrac{{{r}_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}} \\
& \Rightarrow {{\varepsilon }_{eq}}=\dfrac{{{\varepsilon }_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}}+\dfrac{{{\varepsilon }_{2}}{{r}_{1}}}{{{r}_{1}}+{{r}_{2}}} \\
\end{align}\]
Now, let us consider the network given. Two of the batteries are connected parallel to each in series to the third. We can find the emf due to the parallel connections as –
\[\begin{align}
& {{\varepsilon }_{1}}={{\varepsilon }_{2}}=4V, \\
& {{r}_{1}}=1\Omega ,{{r}_{2}}=0.5\Omega \\
& {{\varepsilon }_{p}}=\dfrac{{{\varepsilon }_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}}+\dfrac{{{\varepsilon }_{2}}{{r}_{1}}}{{{r}_{1}}+{{r}_{2}}} \\
& \Rightarrow {{\varepsilon }_{p}}=\dfrac{(4\times 0.5)(4\times 1)}{0.5+1}=4V \\
\end{align}\]
Now, let us find the equivalent emf as –
\[\begin{align}
& {{\varepsilon }_{s}}={{\varepsilon }_{p}}=4V, \\
& {{r}_{1}}=0.5\Omega ,{{r}_{2}}=0.5\Omega \\
& {{\varepsilon }_{eq}}={{\varepsilon }_{1}}+{{\varepsilon }_{2}}=8V \\
\end{align}\]
So, the equivalent emf of the given circuit with a series-parallel combination of batteries is 8V.
Note:
The effective or equivalent resistance and emf should not be confused. The equivalent resistance of a network can be found easily if we can figure out the type of network involved. For the equivalent emf also, the type of network is understood initially to work out but with a more complex formula.
Complete answer:
Let us consider a combination of two batteries of emf \[{{\varepsilon }_{1}}\text{ and }{{\varepsilon }_{2}}\] connected in series with an internal resistance of r1 and r2 respectively.
We know that in a series combination the current remains a constant, that gives the following relation –
\[\begin{align}
& {{\varepsilon }_{1}}={{V}_{1}}-I{{r}_{1}} \\
& \Rightarrow {{V}_{1}}={{\varepsilon }_{1}}+I{{r}_{1}} \\
& \text{and, } \\
& {{\varepsilon }_{2}}={{V}_{2}}-I{{r}_{2}} \\
& \Rightarrow {{V}_{2}}={{\varepsilon }_{2}}+I{{r}_{2}} \\
& \Rightarrow V={{V}_{1}}+{{V}_{2}} \\
& \therefore V=({{\varepsilon }_{1}}+{{\varepsilon }_{2}})+I({{r}_{1}}+{{r}_{2}}) \\
& \Rightarrow {{\varepsilon }_{eq}}={{\varepsilon }_{1}}+{{\varepsilon }_{2}} \\
\end{align}\]
Similarly, if we connect the given batteries parallel we get –
\[\begin{align}
& {{\varepsilon }_{1}}=V-{{I}_{1}}{{r}_{1}} \\
& \Rightarrow {{I}_{1}}=\dfrac{{{\varepsilon }_{1}}-V}{{{r}_{1}}} \\
& \text{and, } \\
& {{\varepsilon }_{2}}=V-{{I}_{1}}{{r}_{2}} \\
& \Rightarrow {{I}_{2}}=\dfrac{{{\varepsilon }_{2}}-V}{{{r}_{2}}} \\
\end{align}\]
We know that in a parallel combination, the voltage is constant and the current is distributed among the two parallel cells according to their emf and internal resistance as -
\[\begin{align}
& \Rightarrow I={{I}_{1}}+{{I}_{2}} \\
& \therefore I=\dfrac{{{\varepsilon }_{1}}-V}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}-V}{{{r}_{2}}} \\
& I=\dfrac{{{\varepsilon }_{1}}}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}}{{{r}_{2}}}-V(\dfrac{1}{{{r}_{1}}}+\dfrac{1}{{{r}_{2}}}) \\
& \Rightarrow V=-[I-(\dfrac{{{\varepsilon }_{1}}}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}}{{{r}_{2}}})]\dfrac{{{r}_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}} \\
& V=(\dfrac{{{\varepsilon }_{1}}}{{{r}_{1}}}+\dfrac{{{\varepsilon }_{2}}}{{{r}_{2}}})(\dfrac{{{r}_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}})-I\dfrac{{{r}_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}} \\
& \Rightarrow {{\varepsilon }_{eq}}=\dfrac{{{\varepsilon }_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}}+\dfrac{{{\varepsilon }_{2}}{{r}_{1}}}{{{r}_{1}}+{{r}_{2}}} \\
\end{align}\]
Now, let us consider the network given. Two of the batteries are connected parallel to each in series to the third. We can find the emf due to the parallel connections as –
\[\begin{align}
& {{\varepsilon }_{1}}={{\varepsilon }_{2}}=4V, \\
& {{r}_{1}}=1\Omega ,{{r}_{2}}=0.5\Omega \\
& {{\varepsilon }_{p}}=\dfrac{{{\varepsilon }_{1}}{{r}_{2}}}{{{r}_{1}}+{{r}_{2}}}+\dfrac{{{\varepsilon }_{2}}{{r}_{1}}}{{{r}_{1}}+{{r}_{2}}} \\
& \Rightarrow {{\varepsilon }_{p}}=\dfrac{(4\times 0.5)(4\times 1)}{0.5+1}=4V \\
\end{align}\]
Now, let us find the equivalent emf as –
\[\begin{align}
& {{\varepsilon }_{s}}={{\varepsilon }_{p}}=4V, \\
& {{r}_{1}}=0.5\Omega ,{{r}_{2}}=0.5\Omega \\
& {{\varepsilon }_{eq}}={{\varepsilon }_{1}}+{{\varepsilon }_{2}}=8V \\
\end{align}\]
So, the equivalent emf of the given circuit with a series-parallel combination of batteries is 8V.
Note:
The effective or equivalent resistance and emf should not be confused. The equivalent resistance of a network can be found easily if we can figure out the type of network involved. For the equivalent emf also, the type of network is understood initially to work out but with a more complex formula.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

