
Find the equations of the medians of a triangle, the co-ordinates of whose vertices are $ \left( { - 1,\,6} \right),\,\left( { - 3,\, - 9} \right),\,\left( {5, - 8} \right) $
Answer
509.1k+ views
Hint: Firstly we will find the coordinates of point D,E and F. Further we will find slopes and equations of line AD,BE and CF also. Thereafter we will find the equation of the medians of a triangle.
Complete step-by-step answer:
D is the midpoint of BC.
So $ D\left( {\dfrac{{ - 3 + 5}}{2},\,\dfrac{{ - 9 + \left( { - 8} \right)}}{2}} \right) $
$ \Rightarrow \,D\left( {1,\,\dfrac{{ - 17}}{2}} \right) $
Similarly, we can find points E and F
$ E\left( {2,\, - 1} \right),\,F\left( { - 2,\,\dfrac{{ - 3}}{2}} \right) $
Equation of AD.
$ y - {y_1} = m\left( {x - {x_1}} \right) $
Where $ m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} $
Now for AD, we will consider $ A\left( { - 1,\,6} \right),\,D\left( {1,\,\dfrac{{ - 11}}{2}} \right) $
$ m = \dfrac{{\dfrac{{ - 17}}{2} - 6}}{{1 + 1}} = \dfrac{{ - 29}}{4} $
So equation of AD will be
$ y - 6 = \dfrac{{ - 29}}{4}\left( {x + 1} \right) $
$ \Rightarrow 4y - 24 = - 29x - 29 $
$ \Rightarrow 29x + 4y + 5 = 0 $
Now slope of $ BE = \dfrac{{ - 1 + 9}}{{2 + 3}} = \dfrac{8}{5} $
Equation of $ BE \to y + 9 = \dfrac{8}{5}\left( {x + 3} \right) $
$ \Rightarrow 5y + 45 = 8x + 24 $
$ \Rightarrow 8x - 5y - 21 = 0 $
Slope of $ CF \to \dfrac{{ - 8 + 2}}{{5 + 2}} = \dfrac{{ - 6}}{7} $
equation $ \to y + 8 = \dfrac{{ - 6}}{7}\left( {x - 5} \right) $
$ \Rightarrow 7y + 56 = - 6x + 30 $
$ \Rightarrow 6x + 7y + 86 = 0 $
Note: Students remember that the Intersection point of medians is called centroid and centroid divide each median in 2:1. Median through a vertex of a triangle bisect the side joining other two vertices.
Complete step-by-step answer:

D is the midpoint of BC.
So $ D\left( {\dfrac{{ - 3 + 5}}{2},\,\dfrac{{ - 9 + \left( { - 8} \right)}}{2}} \right) $
$ \Rightarrow \,D\left( {1,\,\dfrac{{ - 17}}{2}} \right) $
Similarly, we can find points E and F
$ E\left( {2,\, - 1} \right),\,F\left( { - 2,\,\dfrac{{ - 3}}{2}} \right) $
Equation of AD.
$ y - {y_1} = m\left( {x - {x_1}} \right) $
Where $ m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} $
Now for AD, we will consider $ A\left( { - 1,\,6} \right),\,D\left( {1,\,\dfrac{{ - 11}}{2}} \right) $
$ m = \dfrac{{\dfrac{{ - 17}}{2} - 6}}{{1 + 1}} = \dfrac{{ - 29}}{4} $
So equation of AD will be
$ y - 6 = \dfrac{{ - 29}}{4}\left( {x + 1} \right) $
$ \Rightarrow 4y - 24 = - 29x - 29 $
$ \Rightarrow 29x + 4y + 5 = 0 $
Now slope of $ BE = \dfrac{{ - 1 + 9}}{{2 + 3}} = \dfrac{8}{5} $
Equation of $ BE \to y + 9 = \dfrac{8}{5}\left( {x + 3} \right) $
$ \Rightarrow 5y + 45 = 8x + 24 $
$ \Rightarrow 8x - 5y - 21 = 0 $
Slope of $ CF \to \dfrac{{ - 8 + 2}}{{5 + 2}} = \dfrac{{ - 6}}{7} $
equation $ \to y + 8 = \dfrac{{ - 6}}{7}\left( {x - 5} \right) $
$ \Rightarrow 7y + 56 = - 6x + 30 $
$ \Rightarrow 6x + 7y + 86 = 0 $
Note: Students remember that the Intersection point of medians is called centroid and centroid divide each median in 2:1. Median through a vertex of a triangle bisect the side joining other two vertices.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
