
Find the equations of the medians of a triangle, the co-ordinates of whose vertices are $ \left( { - 1,\,6} \right),\,\left( { - 3,\, - 9} \right),\,\left( {5, - 8} \right) $
Answer
573k+ views
Hint: Firstly we will find the coordinates of point D,E and F. Further we will find slopes and equations of line AD,BE and CF also. Thereafter we will find the equation of the medians of a triangle.
Complete step-by-step answer:
D is the midpoint of BC.
So $ D\left( {\dfrac{{ - 3 + 5}}{2},\,\dfrac{{ - 9 + \left( { - 8} \right)}}{2}} \right) $
$ \Rightarrow \,D\left( {1,\,\dfrac{{ - 17}}{2}} \right) $
Similarly, we can find points E and F
$ E\left( {2,\, - 1} \right),\,F\left( { - 2,\,\dfrac{{ - 3}}{2}} \right) $
Equation of AD.
$ y - {y_1} = m\left( {x - {x_1}} \right) $
Where $ m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} $
Now for AD, we will consider $ A\left( { - 1,\,6} \right),\,D\left( {1,\,\dfrac{{ - 11}}{2}} \right) $
$ m = \dfrac{{\dfrac{{ - 17}}{2} - 6}}{{1 + 1}} = \dfrac{{ - 29}}{4} $
So equation of AD will be
$ y - 6 = \dfrac{{ - 29}}{4}\left( {x + 1} \right) $
$ \Rightarrow 4y - 24 = - 29x - 29 $
$ \Rightarrow 29x + 4y + 5 = 0 $
Now slope of $ BE = \dfrac{{ - 1 + 9}}{{2 + 3}} = \dfrac{8}{5} $
Equation of $ BE \to y + 9 = \dfrac{8}{5}\left( {x + 3} \right) $
$ \Rightarrow 5y + 45 = 8x + 24 $
$ \Rightarrow 8x - 5y - 21 = 0 $
Slope of $ CF \to \dfrac{{ - 8 + 2}}{{5 + 2}} = \dfrac{{ - 6}}{7} $
equation $ \to y + 8 = \dfrac{{ - 6}}{7}\left( {x - 5} \right) $
$ \Rightarrow 7y + 56 = - 6x + 30 $
$ \Rightarrow 6x + 7y + 86 = 0 $
Note: Students remember that the Intersection point of medians is called centroid and centroid divide each median in 2:1. Median through a vertex of a triangle bisect the side joining other two vertices.
Complete step-by-step answer:
D is the midpoint of BC.
So $ D\left( {\dfrac{{ - 3 + 5}}{2},\,\dfrac{{ - 9 + \left( { - 8} \right)}}{2}} \right) $
$ \Rightarrow \,D\left( {1,\,\dfrac{{ - 17}}{2}} \right) $
Similarly, we can find points E and F
$ E\left( {2,\, - 1} \right),\,F\left( { - 2,\,\dfrac{{ - 3}}{2}} \right) $
Equation of AD.
$ y - {y_1} = m\left( {x - {x_1}} \right) $
Where $ m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} $
Now for AD, we will consider $ A\left( { - 1,\,6} \right),\,D\left( {1,\,\dfrac{{ - 11}}{2}} \right) $
$ m = \dfrac{{\dfrac{{ - 17}}{2} - 6}}{{1 + 1}} = \dfrac{{ - 29}}{4} $
So equation of AD will be
$ y - 6 = \dfrac{{ - 29}}{4}\left( {x + 1} \right) $
$ \Rightarrow 4y - 24 = - 29x - 29 $
$ \Rightarrow 29x + 4y + 5 = 0 $
Now slope of $ BE = \dfrac{{ - 1 + 9}}{{2 + 3}} = \dfrac{8}{5} $
Equation of $ BE \to y + 9 = \dfrac{8}{5}\left( {x + 3} \right) $
$ \Rightarrow 5y + 45 = 8x + 24 $
$ \Rightarrow 8x - 5y - 21 = 0 $
Slope of $ CF \to \dfrac{{ - 8 + 2}}{{5 + 2}} = \dfrac{{ - 6}}{7} $
equation $ \to y + 8 = \dfrac{{ - 6}}{7}\left( {x - 5} \right) $
$ \Rightarrow 7y + 56 = - 6x + 30 $
$ \Rightarrow 6x + 7y + 86 = 0 $
Note: Students remember that the Intersection point of medians is called centroid and centroid divide each median in 2:1. Median through a vertex of a triangle bisect the side joining other two vertices.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

