
Find the equation of the straight lines passing through the origin and making angle of ${45^\circ }$ with straight line $\sqrt 3 x + y = 11$ .
Answer
563.4k+ views
Hint: We will use the formula of the equations of two lines passing through a point $\left( {{x_1},{y_1}} \right)$ and making angle $\alpha $ with straight line y= mx +c which is given as-
$ \Rightarrow y - {y_1} = \dfrac{{m \pm \tan \alpha }}{{1 \mp m\tan \alpha }}\left( {x - {x_1}} \right)$ . Compare the giving straight line equation with the standard equation to find m. Put the given values in the formula and solve to get the equations.
Complete step-by-step answer:
Given the equation of straight lines passes through origin and makes ${45^\circ }$angle with straight line$\sqrt 3 x + y = 11$.
We can write $\sqrt 3 x + y = 11$ as $y = - \sqrt 3 x + 11$ - (i)
We will use the formula of the equations of two lines passing through a point $\left( {{x_1},{y_1}} \right)$ and making angle $\alpha $ with straight line y= mx +c which is given as-
$ \Rightarrow y - {y_1} = \dfrac{{m \pm \tan \alpha }}{{1 \mp m\tan \alpha }}\left( {x - {x_1}} \right)$
Here since the equation passes through origin$\left( {0,0} \right)$then ${x_1} = 0$ and ${y_1} = 0$ and also here on comparing equation (i) with standard straight line equation, we get-
$ \Rightarrow $m=$ - \sqrt 3 $ and $\alpha = {45^\circ }$
On putting the given equation in the formula, we get-
$ \Rightarrow y - 0 = \dfrac{{ - \sqrt 3 \pm \tan {{45}^ \circ }}}{{1 \mp \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)$
We know that $\tan {45^ \circ } = 1$
On putting the value of angle, we get-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 \pm 1}}{{1 \pm \left( {\sqrt 3 } \right)}}x$
We can also write the above equation as-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 + 1}}{{1 + \sqrt 3 }}x$ and $y = \dfrac{{ - \sqrt 3 - 1}}{{1 - \sqrt 3 }}x$
On rationalizing, we get-
$ \Rightarrow y = \dfrac{{\left( { - \sqrt 3 + 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}x$ and $y = \dfrac{{\left( { - \sqrt 3 - 1} \right)\left( {1 + \sqrt 3 } \right)}}{{\left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)}}x$
Now, we know that $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
On applying this formula, we get-
$ \Rightarrow y = \dfrac{{{{\left( {1 - \sqrt 3 } \right)}^2}}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}x$ and $y = \dfrac{{ - {{\left( {1 + \sqrt 3 } \right)}^2}}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}x$
Now, we know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
On applying both the formulae in the above equation, we get-
$ \Rightarrow y = \dfrac{{1 + 3 - 2\sqrt 3 }}{{\left( {1 - 3} \right)}}x$ and $y = \dfrac{{ - \left( {1 + 3 + 2\sqrt 3 } \right)}}{{\left( {1 - 3} \right)}}x$
On simplifying, we get-
$ \Rightarrow y = \dfrac{{4 - 2\sqrt 3 }}{{ - 2}}x$ and $y = \dfrac{{ - \left( {4 + 2\sqrt 3 } \right)}}{{ - 2}}x$
On further simplifying we get-
$ \Rightarrow y = \dfrac{{ - 4 + 2\sqrt 3 }}{2}x$ and $y = \dfrac{{4 + 2\sqrt 3 }}{2}x$
On further solving, we get-
$ \Rightarrow y = \left( { - 2 + \sqrt 3 } \right)x$ and $y = \left( {2 + \sqrt 3 } \right)x$
On rearranging, we get-
$y = \left( {\sqrt 3 - 2} \right)x$ and $y = \left( {2 + \sqrt 3 } \right)x$
These are the required equations of straight lines passing through the origin and making an angle of ${45^\circ }$ with straight line$\sqrt 3 x + y = 11$.
Note: Here the student can also directly take the different signs from starting step and solve-
$ \Rightarrow y - 0 = \dfrac{{ - \sqrt 3 + \tan {{45}^ \circ }}}{{1 - \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)$ and $y - 0 = \dfrac{{ - \sqrt 3 - \tan {{45}^ \circ }}}{{1 + \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)$
On solving, we get-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 + \tan {{45}^ \circ }}}{{1 + \sqrt 3 \tan {{45}^ \circ }}}x$ and $y = \dfrac{{ - \sqrt 3 - \tan {{45}^ \circ }}}{{1 - \sqrt 3 \tan {{45}^ \circ }}}x$
Put the value of angle-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 + 1}}{{1 + \sqrt 3 }}x$ and $y = \dfrac{{ - \sqrt 3 - 1}}{{1 - \sqrt 3 }}x$
Then solve as given in the above solution.
$ \Rightarrow y - {y_1} = \dfrac{{m \pm \tan \alpha }}{{1 \mp m\tan \alpha }}\left( {x - {x_1}} \right)$ . Compare the giving straight line equation with the standard equation to find m. Put the given values in the formula and solve to get the equations.
Complete step-by-step answer:
Given the equation of straight lines passes through origin and makes ${45^\circ }$angle with straight line$\sqrt 3 x + y = 11$.
We can write $\sqrt 3 x + y = 11$ as $y = - \sqrt 3 x + 11$ - (i)
We will use the formula of the equations of two lines passing through a point $\left( {{x_1},{y_1}} \right)$ and making angle $\alpha $ with straight line y= mx +c which is given as-
$ \Rightarrow y - {y_1} = \dfrac{{m \pm \tan \alpha }}{{1 \mp m\tan \alpha }}\left( {x - {x_1}} \right)$
Here since the equation passes through origin$\left( {0,0} \right)$then ${x_1} = 0$ and ${y_1} = 0$ and also here on comparing equation (i) with standard straight line equation, we get-
$ \Rightarrow $m=$ - \sqrt 3 $ and $\alpha = {45^\circ }$
On putting the given equation in the formula, we get-
$ \Rightarrow y - 0 = \dfrac{{ - \sqrt 3 \pm \tan {{45}^ \circ }}}{{1 \mp \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)$
We know that $\tan {45^ \circ } = 1$
On putting the value of angle, we get-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 \pm 1}}{{1 \pm \left( {\sqrt 3 } \right)}}x$
We can also write the above equation as-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 + 1}}{{1 + \sqrt 3 }}x$ and $y = \dfrac{{ - \sqrt 3 - 1}}{{1 - \sqrt 3 }}x$
On rationalizing, we get-
$ \Rightarrow y = \dfrac{{\left( { - \sqrt 3 + 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}x$ and $y = \dfrac{{\left( { - \sqrt 3 - 1} \right)\left( {1 + \sqrt 3 } \right)}}{{\left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)}}x$
Now, we know that $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
On applying this formula, we get-
$ \Rightarrow y = \dfrac{{{{\left( {1 - \sqrt 3 } \right)}^2}}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}x$ and $y = \dfrac{{ - {{\left( {1 + \sqrt 3 } \right)}^2}}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}x$
Now, we know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
On applying both the formulae in the above equation, we get-
$ \Rightarrow y = \dfrac{{1 + 3 - 2\sqrt 3 }}{{\left( {1 - 3} \right)}}x$ and $y = \dfrac{{ - \left( {1 + 3 + 2\sqrt 3 } \right)}}{{\left( {1 - 3} \right)}}x$
On simplifying, we get-
$ \Rightarrow y = \dfrac{{4 - 2\sqrt 3 }}{{ - 2}}x$ and $y = \dfrac{{ - \left( {4 + 2\sqrt 3 } \right)}}{{ - 2}}x$
On further simplifying we get-
$ \Rightarrow y = \dfrac{{ - 4 + 2\sqrt 3 }}{2}x$ and $y = \dfrac{{4 + 2\sqrt 3 }}{2}x$
On further solving, we get-
$ \Rightarrow y = \left( { - 2 + \sqrt 3 } \right)x$ and $y = \left( {2 + \sqrt 3 } \right)x$
On rearranging, we get-
$y = \left( {\sqrt 3 - 2} \right)x$ and $y = \left( {2 + \sqrt 3 } \right)x$
These are the required equations of straight lines passing through the origin and making an angle of ${45^\circ }$ with straight line$\sqrt 3 x + y = 11$.
Note: Here the student can also directly take the different signs from starting step and solve-
$ \Rightarrow y - 0 = \dfrac{{ - \sqrt 3 + \tan {{45}^ \circ }}}{{1 - \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)$ and $y - 0 = \dfrac{{ - \sqrt 3 - \tan {{45}^ \circ }}}{{1 + \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)$
On solving, we get-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 + \tan {{45}^ \circ }}}{{1 + \sqrt 3 \tan {{45}^ \circ }}}x$ and $y = \dfrac{{ - \sqrt 3 - \tan {{45}^ \circ }}}{{1 - \sqrt 3 \tan {{45}^ \circ }}}x$
Put the value of angle-
$ \Rightarrow y = \dfrac{{ - \sqrt 3 + 1}}{{1 + \sqrt 3 }}x$ and $y = \dfrac{{ - \sqrt 3 - 1}}{{1 - \sqrt 3 }}x$
Then solve as given in the above solution.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

