
Find the equation of the set point $P$, the sum of whose distance from $A\left( {4,0,0} \right)$ and $B\left( { - 4,0,0} \right)$ is equal to 10.
Answer
584.4k+ views
Hint: Let the point $P$ be $\left( {x,y,z} \right)$. Then, we will calculate distance from $P\left( {x,y,z} \right)$ to $A\left( {4,0,0} \right)$ and from $P\left( {x,y,z} \right)$ to $B\left( { - 4,0,0} \right)$ using distance formula. Next, substitute the values in the expression $PA + PB = 10$ and then simplify the equation to find an equation of the set of points of $P$.
Complete step-by-step answer:
Let the coordinates of point $P$ be $\left( {x,y,z} \right)$
Then, according to the given conditions, we have $PA + PB = 10$
Now, we know that distance between 2 points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ is given as $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $
Then, the distance from $P\left( {x,y,z} \right)$ to $A\left( {4,0,0} \right)$ will be
$\Rightarrow$ $\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} $
The distance from $P\left( {x,y,z} \right)$ to $B\left( { - 4,0,0} \right)$
$\Rightarrow$ $\sqrt {{{\left( {x - \left( { - 4} \right)} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} = \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} $
We will substitute these values in the relation $PA + PB = 10$
$\Rightarrow$ $\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} + \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} = 10$
We will take any one of the terms from LHS to RHS.
$\Rightarrow$ $\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} = 10 - \left( {\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right)$
Now, take square on both sides and apply the formula, \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]$
{\left( {x - 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} = 100 + {\left( {x + 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
\Rightarrow {\left( {x - 4} \right)^2} = 100 + {\left( {x + 4} \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
$
Apply the formulas, \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
$
{x^2} + 16 - 8x = 100 + {x^2} + 16 + 8x - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
100 - 16x = \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
$
We can take 4 common from both LHS and RHS
\[25 - 4x = \left( {5\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right)\]
Again take square on both sides,
$
625 + 16{x^2} + 200x = 25\left( {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} \right) \\
\Rightarrow 625 + 16{x^2} + 200x = 25\left( {{x^2} + 16 + 8x + {y^2} + {z^2}} \right) \\
\Rightarrow 9{x^2} + 25{y^2} + 25{z^2} = 225 \\
$
Thus, the equation of the set of point $P$ is \[9{x^2} + 25{y^2} + 25{z^2} = 225\]
Note: The distance formula between two points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ is given as $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $. When we have two terms containing variables and square root on one side, then we bring one to the other side and then take square root to avoid unnecessary calculations.
Complete step-by-step answer:
Let the coordinates of point $P$ be $\left( {x,y,z} \right)$
Then, according to the given conditions, we have $PA + PB = 10$
Now, we know that distance between 2 points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ is given as $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $
Then, the distance from $P\left( {x,y,z} \right)$ to $A\left( {4,0,0} \right)$ will be
$\Rightarrow$ $\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} $
The distance from $P\left( {x,y,z} \right)$ to $B\left( { - 4,0,0} \right)$
$\Rightarrow$ $\sqrt {{{\left( {x - \left( { - 4} \right)} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} = \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} $
We will substitute these values in the relation $PA + PB = 10$
$\Rightarrow$ $\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} + \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} = 10$
We will take any one of the terms from LHS to RHS.
$\Rightarrow$ $\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} = 10 - \left( {\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right)$
Now, take square on both sides and apply the formula, \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]$
{\left( {x - 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} = 100 + {\left( {x + 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
\Rightarrow {\left( {x - 4} \right)^2} = 100 + {\left( {x + 4} \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
$
Apply the formulas, \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
$
{x^2} + 16 - 8x = 100 + {x^2} + 16 + 8x - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
100 - 16x = \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\
$
We can take 4 common from both LHS and RHS
\[25 - 4x = \left( {5\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right)\]
Again take square on both sides,
$
625 + 16{x^2} + 200x = 25\left( {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} \right) \\
\Rightarrow 625 + 16{x^2} + 200x = 25\left( {{x^2} + 16 + 8x + {y^2} + {z^2}} \right) \\
\Rightarrow 9{x^2} + 25{y^2} + 25{z^2} = 225 \\
$
Thus, the equation of the set of point $P$ is \[9{x^2} + 25{y^2} + 25{z^2} = 225\]
Note: The distance formula between two points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ is given as $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $. When we have two terms containing variables and square root on one side, then we bring one to the other side and then take square root to avoid unnecessary calculations.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

