
Find the equation of the right bisector plane of the segment joining (2, 3, 4) and (6, 7, 8)
Answer
563.7k+ views
Hint: A right bisector is a line that cuts another line at midpoint at 90 degrees. It is more often called a perpendicular bisector. To solve this we need to know the formula for Cartesian equation of a line passes through two points \[({x_1},{y_1},{z_1}) \] and \[({x_{2,}}{y_2},{z_2}) \] . Also remember the basic definition of direction cosines of a line.
Complete step-by-step answer:
If we describe the given problem in diagram, we get
We know the Cartesian equation of a line passes through two points \[({x_1},{y_1},{z_1}) \] and \[({x_{2,}}{y_2},{z_2}) \] is:
\[ \begin{gathered}
\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}} \ \
\ \
\end{gathered} \] .
Here, \[({x_1},{y_1},{z_1}) \] = (2, 3, 4) and \[({x_{2,}}{y_2},{z_2}) \] = (6, 7, 8)
Substituting this in above,
\[ \Rightarrow \dfrac{{x - 2}}{{6 - 2}} = \dfrac{{y - 3}}{{7 - 3}} = \dfrac{{z - 4}}{{8 - 4}} \]
\[ \Rightarrow \dfrac{{x - 2}}{4} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{4} \] .
Which is equivalent to
\[ \begin{gathered}
\Rightarrow \dfrac{{x - 2}}{1} = \dfrac{{y - 3}}{1} = \dfrac{{z - 4}}{1} \ \
\ \
\end{gathered} \]
Therefore direction cosines are (1, 1, 1).
The bisector point is given C is given by, \[ \Rightarrow \left( { \dfrac{{{x_1} + {x_2}}}{2}, \dfrac{{{y_1} + {y_2}}}{2}, \dfrac{{{z_1} + {z_2}}}{2}} \right) \]
Substituting \[({x_1},{y_1},{z_1}) \] = (2, 3, 4) and \[({x_{2,}}{y_2},{z_2}) \] = (6, 7, 8)
\[ \Rightarrow \left( { \dfrac{{2 + 6}}{2}, \dfrac{{3 + 7}}{2}, \dfrac{{4 + 8}}{2}} \right) \]
\[ \Rightarrow (4,5,6) \]
We get the point C (4, 5, 6).
Hence the equation of the right bisector in a plane is \[l(x - {c_1}) + m(y - {c_2}) + n(z - {c_3}) = 0 \] .
Where, \[(l,m,n) \] are direction cosines and \[({c_1},{c_2},{c_3}) = (4,5,6) \] .
Substituting above we get,
\[1(x - 4) + 1(y - 5) + 1(z - 6) = 0 \]
Keeping the variable on one side and constant on the other side,
\[ \Rightarrow x + y + z = 4 + 5 + 6 \]
\[ \Rightarrow x + y + z = 15 \]
Hence, the equation of the right bisector plane of the segment joining (2, 3, 4) and (6, 7, 8) is \[x + y + z = 15 \]
So, the correct answer is “ \[x + y + z = 15 \] ”.
Note: In this type of question we need to remember the Cartesian equation of a line passes through two points \[({x_1},{y_1},{z_1}) \] and \[({x_{2,}}{y_2},{z_2}) \] . Direction cosines of a line are the cosines of the angles made by the line with the positive directions of the coordinate axes. Also remember the equation of the bisector in a plane. Which is the same for any problem, so that you can solve for different points.
Complete step-by-step answer:
If we describe the given problem in diagram, we get
We know the Cartesian equation of a line passes through two points \[({x_1},{y_1},{z_1}) \] and \[({x_{2,}}{y_2},{z_2}) \] is:
\[ \begin{gathered}
\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}} \ \
\ \
\end{gathered} \] .
Here, \[({x_1},{y_1},{z_1}) \] = (2, 3, 4) and \[({x_{2,}}{y_2},{z_2}) \] = (6, 7, 8)
Substituting this in above,
\[ \Rightarrow \dfrac{{x - 2}}{{6 - 2}} = \dfrac{{y - 3}}{{7 - 3}} = \dfrac{{z - 4}}{{8 - 4}} \]
\[ \Rightarrow \dfrac{{x - 2}}{4} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{4} \] .
Which is equivalent to
\[ \begin{gathered}
\Rightarrow \dfrac{{x - 2}}{1} = \dfrac{{y - 3}}{1} = \dfrac{{z - 4}}{1} \ \
\ \
\end{gathered} \]
Therefore direction cosines are (1, 1, 1).
The bisector point is given C is given by, \[ \Rightarrow \left( { \dfrac{{{x_1} + {x_2}}}{2}, \dfrac{{{y_1} + {y_2}}}{2}, \dfrac{{{z_1} + {z_2}}}{2}} \right) \]
Substituting \[({x_1},{y_1},{z_1}) \] = (2, 3, 4) and \[({x_{2,}}{y_2},{z_2}) \] = (6, 7, 8)
\[ \Rightarrow \left( { \dfrac{{2 + 6}}{2}, \dfrac{{3 + 7}}{2}, \dfrac{{4 + 8}}{2}} \right) \]
\[ \Rightarrow (4,5,6) \]
We get the point C (4, 5, 6).
Hence the equation of the right bisector in a plane is \[l(x - {c_1}) + m(y - {c_2}) + n(z - {c_3}) = 0 \] .
Where, \[(l,m,n) \] are direction cosines and \[({c_1},{c_2},{c_3}) = (4,5,6) \] .
Substituting above we get,
\[1(x - 4) + 1(y - 5) + 1(z - 6) = 0 \]
Keeping the variable on one side and constant on the other side,
\[ \Rightarrow x + y + z = 4 + 5 + 6 \]
\[ \Rightarrow x + y + z = 15 \]
Hence, the equation of the right bisector plane of the segment joining (2, 3, 4) and (6, 7, 8) is \[x + y + z = 15 \]
So, the correct answer is “ \[x + y + z = 15 \] ”.
Note: In this type of question we need to remember the Cartesian equation of a line passes through two points \[({x_1},{y_1},{z_1}) \] and \[({x_{2,}}{y_2},{z_2}) \] . Direction cosines of a line are the cosines of the angles made by the line with the positive directions of the coordinate axes. Also remember the equation of the bisector in a plane. Which is the same for any problem, so that you can solve for different points.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

