
Find the equation of the plane passing through the following points: (2,3,4), (−3,5,1) and (4,−1,2).
Answer
602.4k+ views
Hint: In this question, we use the concept of the equation of Plane. Equation of plane passing through three non collinear points $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right),\left( {{x_3},{y_3},{z_3}} \right)$ is
\[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Complete step-by-step answer:
Given, we have three points (2,3,4), (−3,5,1) and (4,−1,2).
When we have three non collinear points so the equation plane passing through three non collinear points is \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Now, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,3,4} \right)$ , $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 3,5,1} \right)$ and $\left( {{x_3},{y_3},{z_3}} \right) = \left( {4, - 1,2} \right)$ .
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 3 - 2}&{5 - 3}&{1 - 4} \\
{4 - 2}&{ - 1 - 3}&{2 - 4}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 5}&2&{ - 3} \\
2&{ - 4}&{ - 2}
\end{array}} \right| = 0 \\
\]
Now solve the determinant,
$
\Rightarrow \left( {x - 2} \right)\left( { - 4 - 12} \right) - \left( {y - 3} \right)\left( {10 + 6} \right) + \left( {z - 4} \right)\left( {20 - 4} \right) = 0 \\
\Rightarrow \left( {x - 2} \right)\left( { - 16} \right) - \left( {y - 3} \right)\left( {16} \right) + \left( {z - 4} \right)\left( {16} \right) = 0 \\
$
Divide by 16 in above equation,
$
\Rightarrow \left( {x - 2} \right)\left( { - 1} \right) - \left( {y - 3} \right) + \left( {z - 4} \right) = 0 \\
\Rightarrow - x + 2 - y + 3 + z - 4 = 0 \\
\Rightarrow - x - y + z + 1 = 0 \\
\Rightarrow x + y - z - 1 = 0 \\
\Rightarrow x + y - z = 1 \\
$
So, the equation of the plane passing through the points (2,3,4), (−3,5,1) and (4,−1,2) is $x + y - z = 1$.
Note: Whenever we face such types of problems we can use two methods, one method we already mention above and in second method we can find vector equation of plane passing through three points with position vector $\mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ is $\left( {\mathop r\limits^ \to - \mathop a\limits^ \to } \right).\left[ {\left( {\mathop b\limits^ \to - \mathop a\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop a\limits^ \to } \right)} \right] = 0$ then put $\mathop r\limits^ \to = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge $ . So, we will get the required answer.
\[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Complete step-by-step answer:
Given, we have three points (2,3,4), (−3,5,1) and (4,−1,2).
When we have three non collinear points so the equation plane passing through three non collinear points is \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Now, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,3,4} \right)$ , $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 3,5,1} \right)$ and $\left( {{x_3},{y_3},{z_3}} \right) = \left( {4, - 1,2} \right)$ .
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 3 - 2}&{5 - 3}&{1 - 4} \\
{4 - 2}&{ - 1 - 3}&{2 - 4}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 5}&2&{ - 3} \\
2&{ - 4}&{ - 2}
\end{array}} \right| = 0 \\
\]
Now solve the determinant,
$
\Rightarrow \left( {x - 2} \right)\left( { - 4 - 12} \right) - \left( {y - 3} \right)\left( {10 + 6} \right) + \left( {z - 4} \right)\left( {20 - 4} \right) = 0 \\
\Rightarrow \left( {x - 2} \right)\left( { - 16} \right) - \left( {y - 3} \right)\left( {16} \right) + \left( {z - 4} \right)\left( {16} \right) = 0 \\
$
Divide by 16 in above equation,
$
\Rightarrow \left( {x - 2} \right)\left( { - 1} \right) - \left( {y - 3} \right) + \left( {z - 4} \right) = 0 \\
\Rightarrow - x + 2 - y + 3 + z - 4 = 0 \\
\Rightarrow - x - y + z + 1 = 0 \\
\Rightarrow x + y - z - 1 = 0 \\
\Rightarrow x + y - z = 1 \\
$
So, the equation of the plane passing through the points (2,3,4), (−3,5,1) and (4,−1,2) is $x + y - z = 1$.
Note: Whenever we face such types of problems we can use two methods, one method we already mention above and in second method we can find vector equation of plane passing through three points with position vector $\mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ is $\left( {\mathop r\limits^ \to - \mathop a\limits^ \to } \right).\left[ {\left( {\mathop b\limits^ \to - \mathop a\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop a\limits^ \to } \right)} \right] = 0$ then put $\mathop r\limits^ \to = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge $ . So, we will get the required answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

