
Find the equation of the parabola having focus (3, 2) and vertex (-1, 2) is
Answer
516.6k+ views
Hint: Find the distance between the focus and vertex using the distance formula and take the value as P. Now substitute the value of vertex and P in the standard form of the equation of parabola in the horizontal axis.
We know that parabola is a U – shaped plane curve where any point is at an equal distance from a fixed straight line which is known as the directrix.
Here we have been the co – ordinates of focus of a parabola as (3, 2).
We know the general equation of parabola as \[{{y}^{2}}=4ax\], which is along the x –axis. Here is the distance between vertex and the focus. Here y – coordinate in focus and vertex is the same. Thus the parabola would be along the x – axis.
Now we need to find the distance between the vertex and focus. We can find the distance using the distance formula. According to the formula,
Distance = \[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
Here, \[\left( {{x}_{2}},{{y}_{2}} \right)\] = focus = (3, 2).
\[\left( {{x}_{1}},{{y}_{1}} \right)\] = vertex = (-1, 2).
\[\therefore \] Distance between vertex and focus \[=\sqrt{{{\left( 3-\left( -1 \right) \right)}^{2}}+{{\left( 2-2 \right)}^{2}}}\]
\[\begin{align}
& =\sqrt{{{4}^{2}}+0} \\
& =4 \\
\end{align}\]
The general horizontal parabola, center \[\left( {{x}_{0}},{{y}_{0}} \right)\] focus \[\left( {{x}_{0}}{{y}_{0}}+P \right)\] is given as,
\[{{\left( y-{{y}_{0}} \right)}^{2}}=4P\left( x-{{x}_{0}} \right)\]
Thus we got P = 4, which is the distance between vertex and parabola.
\[{{\left( y-{{y}_{1}} \right)}^{2}}=4P\left( x-{{x}_{1}} \right)\] Put, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -1,2 \right)\].
\[\begin{align}
& {{\left( y-2 \right)}^{2}}=4\times 4\left( x-\left( -1 \right) \right) \\
& {{\left( y-2 \right)}^{2}}=16\left( x+1 \right) \\
\end{align}\]
Thus we got the required equation of the parabola.
i.e. \[{{\left( y-2 \right)}^{2}}=16\left( x+1 \right)\]
Note: If the parabola has a horizontal axis, the standard form of the equation of the parabola is
\[{{\left( y-{{y}_{0}} \right)}^{2}}=4p\left( x-{{x}_{0}} \right)\]
In the case of parabola has vertical axis, the standard form of the equation of the parabola is
\[4p\left( y-{{y}_{0}} \right)={{\left( x-{{x}_{0}} \right)}^{2}}\]
We know that parabola is a U – shaped plane curve where any point is at an equal distance from a fixed straight line which is known as the directrix.
Here we have been the co – ordinates of focus of a parabola as (3, 2).
We know the general equation of parabola as \[{{y}^{2}}=4ax\], which is along the x –axis. Here is the distance between vertex and the focus. Here y – coordinate in focus and vertex is the same. Thus the parabola would be along the x – axis.
Now we need to find the distance between the vertex and focus. We can find the distance using the distance formula. According to the formula,
Distance = \[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
Here, \[\left( {{x}_{2}},{{y}_{2}} \right)\] = focus = (3, 2).
\[\left( {{x}_{1}},{{y}_{1}} \right)\] = vertex = (-1, 2).
\[\therefore \] Distance between vertex and focus \[=\sqrt{{{\left( 3-\left( -1 \right) \right)}^{2}}+{{\left( 2-2 \right)}^{2}}}\]
\[\begin{align}
& =\sqrt{{{4}^{2}}+0} \\
& =4 \\
\end{align}\]
The general horizontal parabola, center \[\left( {{x}_{0}},{{y}_{0}} \right)\] focus \[\left( {{x}_{0}}{{y}_{0}}+P \right)\] is given as,
\[{{\left( y-{{y}_{0}} \right)}^{2}}=4P\left( x-{{x}_{0}} \right)\]
Thus we got P = 4, which is the distance between vertex and parabola.
\[{{\left( y-{{y}_{1}} \right)}^{2}}=4P\left( x-{{x}_{1}} \right)\] Put, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -1,2 \right)\].
\[\begin{align}
& {{\left( y-2 \right)}^{2}}=4\times 4\left( x-\left( -1 \right) \right) \\
& {{\left( y-2 \right)}^{2}}=16\left( x+1 \right) \\
\end{align}\]
Thus we got the required equation of the parabola.
i.e. \[{{\left( y-2 \right)}^{2}}=16\left( x+1 \right)\]
Note: If the parabola has a horizontal axis, the standard form of the equation of the parabola is
\[{{\left( y-{{y}_{0}} \right)}^{2}}=4p\left( x-{{x}_{0}} \right)\]
In the case of parabola has vertical axis, the standard form of the equation of the parabola is
\[4p\left( y-{{y}_{0}} \right)={{\left( x-{{x}_{0}} \right)}^{2}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
