
Find the equation of the locus of a point which is always equidistant from the points whose coordinates are $(2,3)and(4,5)$.
Answer
589.2k+ views
Hint: We will consider a point P(h, k).Then we will use distance formula to calculate PA and PB. Thereafter, we will apply the equidistant condition to get the answer. By using the distance formula $ = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Complete step by step solution:
Let the point be $P(h,k)$
Here, $A(2,3)$ and $B(4,5)$
Now, we use distance formula, for calculate the value of$PA\,\,and\,\,PB$
Distance formula$ = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Now,$PA = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
$P(h,k)\,\,and\,\,A(2,3)$and$B(4,5)$ we substitute the value of $(x,y)and({x_2},{y_2})$
$PA = \sqrt {{{(h - 2)}^2} + {{(k - 3)}^2}} $
And $PB = \sqrt {{{(h - 4)}^2} + {{(k - 5)}^2}} $
Given $PA$and $PB$are equidistant then
$PA = PB$
\[\sqrt {{{(h - 2)}^2} + {{(k - 3)}^2}} = \sqrt {{{(h - 4)}^2} + {{(k - 5)}^2}} \]
Squaring both sides, we have
$ \Rightarrow {(h - 2)^2} + {(k - 3)^2} = {(h - 4)^2} + {(k - 5)^2}$
Now, we will using squaring the number using identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$then
${x^2} + {(2)^2} - 2 \times 2h + {k^2}{(3)^2} - 2 \times 3 \times k = {(h)^2} + {(4)^2} - 2 \times 4 \times 1 + {(k)^2} + {(5)^2} - 2 \times k \times 5$
$ \Rightarrow {h^2} + 4 - 4h + {k^2} + 9 - 6k = {h^2} + 18 - 8h{k^2} + 25 - 10k$
$ \Rightarrow 4 - 4h + 9 - 6k = 16 - 8h + 25 - 10k$
$ \Rightarrow 4 + 4h + 9 - 6 - 16 + 8h - 35 + 10k = 0$
$ \Rightarrow 4 + 9 - 16 - 25 - 4h + 8h - 6k + 10k = 0$
$ \Rightarrow 15 - 41 + 4h + 4k = 0$
$ \Rightarrow - 28 + 4h + 4k = 0$
$ \Rightarrow 4( - 7 + h + k) = 0$
$ \Rightarrow - 7 + h + k = 0$
$ \Rightarrow h + k = 7$
$ \Rightarrow h + k - 7 = 0$
Therefore, the equation of line is $h + k - 7 = 0$
Note: Students must keep in mind that if a point P is equidistant from point A and other point B then it will the same distance from them .In other words ,PA=PB
Complete step by step solution:
Let the point be $P(h,k)$
Here, $A(2,3)$ and $B(4,5)$
Now, we use distance formula, for calculate the value of$PA\,\,and\,\,PB$
Distance formula$ = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Now,$PA = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
$P(h,k)\,\,and\,\,A(2,3)$and$B(4,5)$ we substitute the value of $(x,y)and({x_2},{y_2})$
$PA = \sqrt {{{(h - 2)}^2} + {{(k - 3)}^2}} $
And $PB = \sqrt {{{(h - 4)}^2} + {{(k - 5)}^2}} $
Given $PA$and $PB$are equidistant then
$PA = PB$
\[\sqrt {{{(h - 2)}^2} + {{(k - 3)}^2}} = \sqrt {{{(h - 4)}^2} + {{(k - 5)}^2}} \]
Squaring both sides, we have
$ \Rightarrow {(h - 2)^2} + {(k - 3)^2} = {(h - 4)^2} + {(k - 5)^2}$
Now, we will using squaring the number using identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$then
${x^2} + {(2)^2} - 2 \times 2h + {k^2}{(3)^2} - 2 \times 3 \times k = {(h)^2} + {(4)^2} - 2 \times 4 \times 1 + {(k)^2} + {(5)^2} - 2 \times k \times 5$
$ \Rightarrow {h^2} + 4 - 4h + {k^2} + 9 - 6k = {h^2} + 18 - 8h{k^2} + 25 - 10k$
$ \Rightarrow 4 - 4h + 9 - 6k = 16 - 8h + 25 - 10k$
$ \Rightarrow 4 + 4h + 9 - 6 - 16 + 8h - 35 + 10k = 0$
$ \Rightarrow 4 + 9 - 16 - 25 - 4h + 8h - 6k + 10k = 0$
$ \Rightarrow 15 - 41 + 4h + 4k = 0$
$ \Rightarrow - 28 + 4h + 4k = 0$
$ \Rightarrow 4( - 7 + h + k) = 0$
$ \Rightarrow - 7 + h + k = 0$
$ \Rightarrow h + k = 7$
$ \Rightarrow h + k - 7 = 0$
Therefore, the equation of line is $h + k - 7 = 0$
Note: Students must keep in mind that if a point P is equidistant from point A and other point B then it will the same distance from them .In other words ,PA=PB
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

