
Find the equation of the circle passing through the points (2, 3) and (-1, 1) and whose center is on the line \[x-3y-11=0\].
Answer
597.3k+ views
Hint: In the above question we will suppose a point \[\left( {{x}_{1}},{{y}_{1}} \right)\] center of the circle. Since this point lies on the line \[x-3y-11=0\]. So it satisfies by substituting \[\left( {{x}_{1}},{{y}_{1}} \right)\] in the equation of line, we get an equation between \[{{x}_{1}}\] and \[{{y}_{1}}\]. Also we know that the distance between the center of a circle to the point on the circle is constant. So we will use the concept to find out \[{{x}_{1}}\] and \[{{y}_{1}}\], then we will use the general formula for the equation of a circle as follows:
\[{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}}\], where ‘r’ is the radius of the circle.
Complete step-by-step solution -
We have been given that a circle is passing through the points (2, 3) and (-1, 1) and whose center is on the line \[x-3y-11=0\].
So the point \[\left( {{x}_{1}},{{y}_{1}} \right)\] satisfied the equation of the line as follows:
\[\begin{align}
& {{x}_{1}}-3{{y}_{1}}-11=0 \\
& {{x}_{1}}-3{{y}_{1}}=11 \\
& {{x}_{1}}=11+3{{y}_{1}}.....(1) \\
\end{align}\]
We know that the distance between the center of a circle and points on the circle is constant and equals to radius of the circle.
Also, the distance between two points, say, \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by:
\[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
So the distance between the center \[\left( {{x}_{1}},{{y}_{1}} \right)\] and (2, 3) is given as follows:
\[{{d}_{1}}=\sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}}....(2)\]
Also the distance between the center \[\left( {{x}_{1}},{{y}_{1}} \right)\] and (-1, 1) is given as follows:
\[{{d}_{2}}=\sqrt{{{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}}}....(3)\]
We know that both the distances \[{{d}_{1}}\] and \[{{d}_{2}}\]are equal as they are the radius of the circle.
So we will equate the equation (2) and (3).
\[\begin{align}
& \Rightarrow {{d}_{1}}={{d}_{2}} \\
& \Rightarrow \sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}}=\sqrt{{{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}}} \\
\end{align}\]
On equating both the sides of the equation, we get as follows:
\[\begin{align}
& \Rightarrow {{\left( \sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}} \right)}^{2}}={{\left( \sqrt{{{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}}} \right)}^{2}} \\
& ={{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}={{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
\end{align}\]
We know that \[{{x}_{1}}=11+3y\], from equation (1). So by substituting the value of \[{{x}_{1}}\] in the above equation, we get as follows:
\[\begin{align}
& \Rightarrow {{\left[ 2-\left( 11+3{{y}_{1}} \right) \right]}^{2}}+{{\left[ 3-{{y}_{1}} \right]}^{2}}={{\left[ -1-\left( 11+3{{y}_{1}} \right) \right]}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
& ={{\left( 2-11-3{{y}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}={{\left( -1-11-3{{y}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
& ={{\left( -9-3{{y}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}=\left( -12-3{{y}_{1}} \right)+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
\end{align}\]
On expanding each term of the equation, we get as follows:
\[\begin{align}
& \Rightarrow {{\left( -9 \right)}^{2}}+{{\left( 3{{y}_{1}} \right)}^{2}}+2\left( -9 \right)\left( -3{{y}_{1}} \right)+{{\left( 3 \right)}^{2}}+{{\left( {{y}_{1}} \right)}^{2}}-2\times 3{{y}_{1}}={{\left( -12 \right)}^{2}}+{{\left( -3{{y}_{1}} \right)}^{2}}+2\left( -12 \right)\left( -3{{y}_{1}} \right)+{{1}^{2}}+{{y}_{1}}^{2}-2{{y}_{1}} \\
& \Rightarrow 81+9{{y}_{1}}^{2}+54{{y}_{1}}+9+{{y}_{1}}^{2}-6{{y}_{1}}=144+9{{y}_{1}}^{2}+72{{y}_{1}}+1+{{y}_{1}}^{2}-2{{y}_{1}} \\
& \Rightarrow 81+9+9{{y}_{1}}^{2}+{{y}_{1}}^{2}+54{{y}_{1}}-6{{y}_{1}}=144+1+9{{y}_{1}}^{2}+{{y}_{1}}^{2}+72{{y}_{1}}-2{{y}_{1}} \\
& \Rightarrow 90+10{{y}_{1}}^{2}+48{{y}_{1}}=145+10{{y}_{1}}^{2}+70{{y}_{1}} \\
& \Rightarrow 10{{y}_{1}}^{2}-10{{y}_{1}}^{2}=145-90+70{{y}_{1}}-48{{y}_{1}} \\
& \Rightarrow 0=55+22{{y}_{1}} \\
& \Rightarrow -55=22{{y}_{1}} \\
& \Rightarrow \dfrac{-55}{22}={{y}_{1}} \\
& \Rightarrow {{y}_{1}}=\dfrac{-5}{2} \\
\end{align}\]
Now substituting the value of \[{{y}_{1}}=\dfrac{-5}{2}\]in the equation (1), we get as follows:
\[\begin{align}
& {{x}_{1}}=11+3{{y}_{1}} \\
& {{x}_{1}}=11+3\left( \dfrac{-5}{2} \right) \\
& {{x}_{1}}=11-\dfrac{15}{2} \\
& {{x}_{1}}=\dfrac{22-15}{2} \\
& {{x}_{1}}=\dfrac{7}{2} \\
\end{align}\]
Hence, the center of the circle is \[\left( \dfrac{7}{2},\dfrac{-5}{2} \right)\].
Now substituting the value of \[{{x}_{1}}\] and \[{{y}_{1}}\] in the equation (2) we will get the radius of the circle as follows:
Radius (r),
\[\begin{align}
& =\sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}} \\
& =\sqrt{{{\left( 2-\dfrac{7}{2} \right)}^{2}}+{{\left( 3-\left( \dfrac{-5}{2} \right) \right)}^{2}}} \\
& =\sqrt{{{\left( \dfrac{4-7}{2} \right)}^{2}}+{{\left( \dfrac{6+5}{2} \right)}^{2}}} \\
& =\sqrt{{{\left( \dfrac{-3}{2} \right)}^{2}}+{{\left( \dfrac{11}{2} \right)}^{2}}} \\
& =\sqrt{\dfrac{9}{4}+\dfrac{121}{4}}=\sqrt{\dfrac{130}{4}}=\dfrac{\sqrt{130}}{2} \\
\end{align}\]
So we get the radius of the circle as \[\dfrac{\sqrt{130}}{2}\] units.
We know that the equation of circle is given by:
\[\begin{align}
& {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}} \\
& {{\left( x-\dfrac{7}{2} \right)}^{2}}+{{\left[ y-\left( \dfrac{-5}{2} \right) \right]}^{2}}={{\left( \dfrac{\sqrt{130}}{2} \right)}^{2}} \\
& {{x}^{2}}+{{\left( \dfrac{7}{2} \right)}^{2}}-2x\left( \dfrac{7}{2} \right)+{{y}^{2}}+\dfrac{25}{4}+2y\left( \dfrac{5}{2} \right)=\dfrac{130}{4} \\
& {{x}^{2}}+{{y}^{2}}-7x+5y+\dfrac{49}{4}+\dfrac{25}{4}=\dfrac{65}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+5y+\dfrac{74}{4}=\dfrac{65}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+5y+\dfrac{37}{2}=\dfrac{65}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=\dfrac{65}{2}-\dfrac{37}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=\dfrac{65-37}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=\dfrac{28}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=14 \\
\end{align}\]
Therefore, the required equation of the circle is equal to \[{{x}^{2}}+{{y}^{2}}-7x+54=14\]. We can represent it as below,
Note: Be careful while squaring and equating the equation (2) and (3) as there is a chance of calculation mistake. Also, take care of the signs when you substitute \[x-3y-11=0\] in the equation. Here key concept to solve this type of question is that every point on the circle is always equidistant from the centre of the circle.
\[{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}}\], where ‘r’ is the radius of the circle.
Complete step-by-step solution -
We have been given that a circle is passing through the points (2, 3) and (-1, 1) and whose center is on the line \[x-3y-11=0\].
So the point \[\left( {{x}_{1}},{{y}_{1}} \right)\] satisfied the equation of the line as follows:
\[\begin{align}
& {{x}_{1}}-3{{y}_{1}}-11=0 \\
& {{x}_{1}}-3{{y}_{1}}=11 \\
& {{x}_{1}}=11+3{{y}_{1}}.....(1) \\
\end{align}\]
We know that the distance between the center of a circle and points on the circle is constant and equals to radius of the circle.
Also, the distance between two points, say, \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by:
\[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
So the distance between the center \[\left( {{x}_{1}},{{y}_{1}} \right)\] and (2, 3) is given as follows:
\[{{d}_{1}}=\sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}}....(2)\]
Also the distance between the center \[\left( {{x}_{1}},{{y}_{1}} \right)\] and (-1, 1) is given as follows:
\[{{d}_{2}}=\sqrt{{{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}}}....(3)\]
We know that both the distances \[{{d}_{1}}\] and \[{{d}_{2}}\]are equal as they are the radius of the circle.
So we will equate the equation (2) and (3).
\[\begin{align}
& \Rightarrow {{d}_{1}}={{d}_{2}} \\
& \Rightarrow \sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}}=\sqrt{{{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}}} \\
\end{align}\]
On equating both the sides of the equation, we get as follows:
\[\begin{align}
& \Rightarrow {{\left( \sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}} \right)}^{2}}={{\left( \sqrt{{{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}}} \right)}^{2}} \\
& ={{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}={{\left( -1-{{x}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
\end{align}\]
We know that \[{{x}_{1}}=11+3y\], from equation (1). So by substituting the value of \[{{x}_{1}}\] in the above equation, we get as follows:
\[\begin{align}
& \Rightarrow {{\left[ 2-\left( 11+3{{y}_{1}} \right) \right]}^{2}}+{{\left[ 3-{{y}_{1}} \right]}^{2}}={{\left[ -1-\left( 11+3{{y}_{1}} \right) \right]}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
& ={{\left( 2-11-3{{y}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}={{\left( -1-11-3{{y}_{1}} \right)}^{2}}+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
& ={{\left( -9-3{{y}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}=\left( -12-3{{y}_{1}} \right)+{{\left( 1-{{y}_{1}} \right)}^{2}} \\
\end{align}\]
On expanding each term of the equation, we get as follows:
\[\begin{align}
& \Rightarrow {{\left( -9 \right)}^{2}}+{{\left( 3{{y}_{1}} \right)}^{2}}+2\left( -9 \right)\left( -3{{y}_{1}} \right)+{{\left( 3 \right)}^{2}}+{{\left( {{y}_{1}} \right)}^{2}}-2\times 3{{y}_{1}}={{\left( -12 \right)}^{2}}+{{\left( -3{{y}_{1}} \right)}^{2}}+2\left( -12 \right)\left( -3{{y}_{1}} \right)+{{1}^{2}}+{{y}_{1}}^{2}-2{{y}_{1}} \\
& \Rightarrow 81+9{{y}_{1}}^{2}+54{{y}_{1}}+9+{{y}_{1}}^{2}-6{{y}_{1}}=144+9{{y}_{1}}^{2}+72{{y}_{1}}+1+{{y}_{1}}^{2}-2{{y}_{1}} \\
& \Rightarrow 81+9+9{{y}_{1}}^{2}+{{y}_{1}}^{2}+54{{y}_{1}}-6{{y}_{1}}=144+1+9{{y}_{1}}^{2}+{{y}_{1}}^{2}+72{{y}_{1}}-2{{y}_{1}} \\
& \Rightarrow 90+10{{y}_{1}}^{2}+48{{y}_{1}}=145+10{{y}_{1}}^{2}+70{{y}_{1}} \\
& \Rightarrow 10{{y}_{1}}^{2}-10{{y}_{1}}^{2}=145-90+70{{y}_{1}}-48{{y}_{1}} \\
& \Rightarrow 0=55+22{{y}_{1}} \\
& \Rightarrow -55=22{{y}_{1}} \\
& \Rightarrow \dfrac{-55}{22}={{y}_{1}} \\
& \Rightarrow {{y}_{1}}=\dfrac{-5}{2} \\
\end{align}\]
Now substituting the value of \[{{y}_{1}}=\dfrac{-5}{2}\]in the equation (1), we get as follows:
\[\begin{align}
& {{x}_{1}}=11+3{{y}_{1}} \\
& {{x}_{1}}=11+3\left( \dfrac{-5}{2} \right) \\
& {{x}_{1}}=11-\dfrac{15}{2} \\
& {{x}_{1}}=\dfrac{22-15}{2} \\
& {{x}_{1}}=\dfrac{7}{2} \\
\end{align}\]
Hence, the center of the circle is \[\left( \dfrac{7}{2},\dfrac{-5}{2} \right)\].
Now substituting the value of \[{{x}_{1}}\] and \[{{y}_{1}}\] in the equation (2) we will get the radius of the circle as follows:
Radius (r),
\[\begin{align}
& =\sqrt{{{\left( 2-{{x}_{1}} \right)}^{2}}+{{\left( 3-{{y}_{1}} \right)}^{2}}} \\
& =\sqrt{{{\left( 2-\dfrac{7}{2} \right)}^{2}}+{{\left( 3-\left( \dfrac{-5}{2} \right) \right)}^{2}}} \\
& =\sqrt{{{\left( \dfrac{4-7}{2} \right)}^{2}}+{{\left( \dfrac{6+5}{2} \right)}^{2}}} \\
& =\sqrt{{{\left( \dfrac{-3}{2} \right)}^{2}}+{{\left( \dfrac{11}{2} \right)}^{2}}} \\
& =\sqrt{\dfrac{9}{4}+\dfrac{121}{4}}=\sqrt{\dfrac{130}{4}}=\dfrac{\sqrt{130}}{2} \\
\end{align}\]
So we get the radius of the circle as \[\dfrac{\sqrt{130}}{2}\] units.
We know that the equation of circle is given by:
\[\begin{align}
& {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}} \\
& {{\left( x-\dfrac{7}{2} \right)}^{2}}+{{\left[ y-\left( \dfrac{-5}{2} \right) \right]}^{2}}={{\left( \dfrac{\sqrt{130}}{2} \right)}^{2}} \\
& {{x}^{2}}+{{\left( \dfrac{7}{2} \right)}^{2}}-2x\left( \dfrac{7}{2} \right)+{{y}^{2}}+\dfrac{25}{4}+2y\left( \dfrac{5}{2} \right)=\dfrac{130}{4} \\
& {{x}^{2}}+{{y}^{2}}-7x+5y+\dfrac{49}{4}+\dfrac{25}{4}=\dfrac{65}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+5y+\dfrac{74}{4}=\dfrac{65}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+5y+\dfrac{37}{2}=\dfrac{65}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=\dfrac{65}{2}-\dfrac{37}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=\dfrac{65-37}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=\dfrac{28}{2} \\
& {{x}^{2}}+{{y}^{2}}-7x+54=14 \\
\end{align}\]
Therefore, the required equation of the circle is equal to \[{{x}^{2}}+{{y}^{2}}-7x+54=14\]. We can represent it as below,
Note: Be careful while squaring and equating the equation (2) and (3) as there is a chance of calculation mistake. Also, take care of the signs when you substitute \[x-3y-11=0\] in the equation. Here key concept to solve this type of question is that every point on the circle is always equidistant from the centre of the circle.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

