
Find the equation of a sphere which passes through the circle ${{x}^{2}}+{{y}^{2}}=4$, z = 0 and is cut by the plane $x+2y+2z=0$ in a circle of radius 3.
Answer
591.6k+ views
Hint:First write the general equation of a sphere which is ${{x}^{2}}+{{y}^{2}}+2gx+2fy+2hz+c=0$ then put z = 0 in this equation. We can find the centre and radius of a sphere from the equation of a sphere as the centre of a sphere is (-g, -f, -h) and radius of a sphere is $\sqrt{{{g}^{2}}+{{f}^{2}}+{{h}^{2}}-c}$. Now as the sphere is passing through a circle so we can compare the equation of the sphere with the circle and find the centre and radius from it. Then drop a perpendicular from the centre of the sphere to the plane and then apply Pythagoras theorem and get all the remaining unknowns.
Complete step-by-step answer:
The general equation of a sphere is:
${{x}^{2}}+{{y}^{2}}+2gx+2fy+2hz+c=0$
It is given that the sphere passes through z = 0. Plugging z = 0 in the above equation we get,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
We know that if a sphere equation is given then we can find the centre and radius of a sphere as follows:
Centre of a sphere is (-g, -f, -h).
Radius of a sphere is $\sqrt{{{g}^{2}}+{{f}^{2}}+{{h}^{2}}-c}$.
Now, it is also given that the sphere passes through the equation of circle ${{x}^{2}}+{{y}^{2}}=4$ so comparing equation of a circle with the sphere we get,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
${{x}^{2}}+{{y}^{2}}-4=0$
On comparing the above two equations we get, g = 0, f = 0, c = -4.
Substituting the value of g, f and c in the formula of centre and radius of a sphere we get,
The centre of the sphere is (0, 0, -h) and the radius of the sphere is $\sqrt{{{h}^{2}}+4}$.
Now in the figure below, a plane $x+2y+2z=0$ cuts the sphere in a circle of radius equal 3.
As you can see from the figure that the sphere is centred at A and CD is the diameter of a circle cut by the plane. AD is the radius of the sphere and AD is the perpendicular drawn from point A to the plane.
Applying Pythagoras theorem in the $\Delta AED$ we get,
AD2 = AE2 + ED2
AE is the perpendicular drawn from a point A to the plane. The length of the perpendicular drawn from a point A (0, 0, h) to the plane $x+2y+2z=0$ is equal to $\dfrac{2h}{3}$.
ED is the radius of the circle cut by the plane on the sphere and is equal to 3.
AD = $\sqrt{{{h}^{2}}+4}$
Substituting these values in Pythagoras theorem we get,
$\begin{align}
& {{h}^{2}}+4=\dfrac{4{{h}^{2}}}{9}+9 \\
& \Rightarrow 9{{h}^{2}}+36=4{{h}^{2}}+81 \\
& \Rightarrow 5{{h}^{2}}=45 \\
& \Rightarrow {{h}^{2}}=9 \\
& \Rightarrow h=\pm 3 \\
\end{align}$
When h = 3, the equation of sphere is ${{x}^{2}}+{{y}^{2}}+6z-4=0$.
And when h = -3, the equation of a sphere is ${{x}^{2}}+{{y}^{2}}-6z-4=0$.
Note: As in the above solution, we have written the length of the perpendicular from a point A to the plane $x+2y+2z=0$. We are going to show how this length of perpendicular has come.
We know the formula for the perpendicular distance from a point $P\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ to the plane $ax+by+cz=0$ is:
$\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
Now, we are evaluating the perpendicular distance from a point A (0, 0, -h) to the plane $x+2y+2z=0$ using the above formula where ${{x}_{1}}=0,{{y}_{1}}=0,z=-h$ and $a=1,b=2,c=2$ we get,
$\begin{align}
& \dfrac{\left| 0+0-2h \right|}{\sqrt{1+{{2}^{2}}+{{2}^{2}}}} \\
& =\dfrac{2h}{3} \\
\end{align}$.
Complete step-by-step answer:
The general equation of a sphere is:
${{x}^{2}}+{{y}^{2}}+2gx+2fy+2hz+c=0$
It is given that the sphere passes through z = 0. Plugging z = 0 in the above equation we get,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
We know that if a sphere equation is given then we can find the centre and radius of a sphere as follows:
Centre of a sphere is (-g, -f, -h).
Radius of a sphere is $\sqrt{{{g}^{2}}+{{f}^{2}}+{{h}^{2}}-c}$.
Now, it is also given that the sphere passes through the equation of circle ${{x}^{2}}+{{y}^{2}}=4$ so comparing equation of a circle with the sphere we get,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
${{x}^{2}}+{{y}^{2}}-4=0$
On comparing the above two equations we get, g = 0, f = 0, c = -4.
Substituting the value of g, f and c in the formula of centre and radius of a sphere we get,
The centre of the sphere is (0, 0, -h) and the radius of the sphere is $\sqrt{{{h}^{2}}+4}$.
Now in the figure below, a plane $x+2y+2z=0$ cuts the sphere in a circle of radius equal 3.
As you can see from the figure that the sphere is centred at A and CD is the diameter of a circle cut by the plane. AD is the radius of the sphere and AD is the perpendicular drawn from point A to the plane.
Applying Pythagoras theorem in the $\Delta AED$ we get,
AD2 = AE2 + ED2
AE is the perpendicular drawn from a point A to the plane. The length of the perpendicular drawn from a point A (0, 0, h) to the plane $x+2y+2z=0$ is equal to $\dfrac{2h}{3}$.
ED is the radius of the circle cut by the plane on the sphere and is equal to 3.
AD = $\sqrt{{{h}^{2}}+4}$
Substituting these values in Pythagoras theorem we get,
$\begin{align}
& {{h}^{2}}+4=\dfrac{4{{h}^{2}}}{9}+9 \\
& \Rightarrow 9{{h}^{2}}+36=4{{h}^{2}}+81 \\
& \Rightarrow 5{{h}^{2}}=45 \\
& \Rightarrow {{h}^{2}}=9 \\
& \Rightarrow h=\pm 3 \\
\end{align}$
When h = 3, the equation of sphere is ${{x}^{2}}+{{y}^{2}}+6z-4=0$.
And when h = -3, the equation of a sphere is ${{x}^{2}}+{{y}^{2}}-6z-4=0$.
Note: As in the above solution, we have written the length of the perpendicular from a point A to the plane $x+2y+2z=0$. We are going to show how this length of perpendicular has come.
We know the formula for the perpendicular distance from a point $P\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ to the plane $ax+by+cz=0$ is:
$\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
Now, we are evaluating the perpendicular distance from a point A (0, 0, -h) to the plane $x+2y+2z=0$ using the above formula where ${{x}_{1}}=0,{{y}_{1}}=0,z=-h$ and $a=1,b=2,c=2$ we get,
$\begin{align}
& \dfrac{\left| 0+0-2h \right|}{\sqrt{1+{{2}^{2}}+{{2}^{2}}}} \\
& =\dfrac{2h}{3} \\
\end{align}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

