Answer
Verified
421.2k+ views
Hint: To solve this question use the point-intercept formula to find the equation of the line. The point $(x,y)$ on the line with slope $m$ and $y$ -intercept $c$ lies on the line if and only if \[y = mx + c\;\].
$\therefore $ substitute $ - 1$ as m and $ - 4$ as $c$ into the equation \[y = mx + c\;\] that is the equation of line.
Take $c$ as $-4$ as the intercept is made on the negative side of the $y$-axis.
Complete answer:
The slope of the line is given as $ - 1$ and the intercept on the negative $y$ -axis is 4. Since the intercept is made on the negative side of the $y$ -axis therefore, the value of $c$ is $ - 4$.
\[ \Rightarrow \]$m = - 1$
\[ \Rightarrow \]$c = - 4$
The point-intercept formula to find the equation of the line is \[y = mx + c\;\], where $m$ is the slope and $c$ is the $y$-intercept.
Substitute $m = - 1$ and $c = - 4$ into the equation of the line,
\[ \Rightarrow \]\[y = mx + c\;\]
\[ \Rightarrow y = - 1x + ( - 4)\]
\[ \Rightarrow y = - x - 4\]
After rearrange the equation we get,
\[ \Rightarrow \]\[y + x + 4 = 0\]
The equation of a line with slope is $ - 1$ and cutting off an intercept of $4$ units in the negative direction of $y$-axis is \[y + x + 4 = 0\].
Note:
If the intercept on the positive side of the $y$-axis then the value of $c$will be positive and If the intercept on the negative side of the $y$-axis then the value of $c$will be negative. In this question take intercept $c = - 4$.
Another method:
The line with the slope m cuts the y-axis from the negative direction at a distance c from the origin.
Here, $c$ represents the y-intercept of the line. That means \[x\] -coordinate of the point is \[0\] and the \[y\]-coordinate is $ - c$ because the intercept on the negative side of the $y$-axis .The coordinates of the point where the line meet the y-axis is \[(0, - c)\].
$\therefore $ The point is $(0, - 4)$ and slope is $ - 1$ .
Therefore, by point-slope form with slope $m$and point \[\left( {{x_{1,}}{y_1}} \right)\] to find the equation of line is,
$y - {y_1} = m(x - {x_1})$
Substitute ${x_1} = 0$,${y_1} = - 4$ and $m = - 1$ into the equation,
$ \Rightarrow y - ( - 4) = ( - 1)(x - 0)$
$ \Rightarrow y + 4 = - 1x$
$ \Rightarrow y + 4 + x = 0$
The equation of a line with slope is $ - 1$ and cutting off an intercept of $4$ units in the negative direction of $y$-axis is \[y + x + 4 = 0\].
$\therefore $ substitute $ - 1$ as m and $ - 4$ as $c$ into the equation \[y = mx + c\;\] that is the equation of line.
Take $c$ as $-4$ as the intercept is made on the negative side of the $y$-axis.
Complete answer:
The slope of the line is given as $ - 1$ and the intercept on the negative $y$ -axis is 4. Since the intercept is made on the negative side of the $y$ -axis therefore, the value of $c$ is $ - 4$.
\[ \Rightarrow \]$m = - 1$
\[ \Rightarrow \]$c = - 4$
The point-intercept formula to find the equation of the line is \[y = mx + c\;\], where $m$ is the slope and $c$ is the $y$-intercept.
Substitute $m = - 1$ and $c = - 4$ into the equation of the line,
\[ \Rightarrow \]\[y = mx + c\;\]
\[ \Rightarrow y = - 1x + ( - 4)\]
\[ \Rightarrow y = - x - 4\]
After rearrange the equation we get,
\[ \Rightarrow \]\[y + x + 4 = 0\]
The equation of a line with slope is $ - 1$ and cutting off an intercept of $4$ units in the negative direction of $y$-axis is \[y + x + 4 = 0\].
Note:
If the intercept on the positive side of the $y$-axis then the value of $c$will be positive and If the intercept on the negative side of the $y$-axis then the value of $c$will be negative. In this question take intercept $c = - 4$.
Another method:
The line with the slope m cuts the y-axis from the negative direction at a distance c from the origin.
Here, $c$ represents the y-intercept of the line. That means \[x\] -coordinate of the point is \[0\] and the \[y\]-coordinate is $ - c$ because the intercept on the negative side of the $y$-axis .The coordinates of the point where the line meet the y-axis is \[(0, - c)\].
$\therefore $ The point is $(0, - 4)$ and slope is $ - 1$ .
Therefore, by point-slope form with slope $m$and point \[\left( {{x_{1,}}{y_1}} \right)\] to find the equation of line is,
$y - {y_1} = m(x - {x_1})$
Substitute ${x_1} = 0$,${y_1} = - 4$ and $m = - 1$ into the equation,
$ \Rightarrow y - ( - 4) = ( - 1)(x - 0)$
$ \Rightarrow y + 4 = - 1x$
$ \Rightarrow y + 4 + x = 0$
The equation of a line with slope is $ - 1$ and cutting off an intercept of $4$ units in the negative direction of $y$-axis is \[y + x + 4 = 0\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell