
How do you find the domain and range of inverse \[\cos \left( {{e^x}} \right)\]?
Answer
526.8k+ views
Hint: The domain of a function is the set of all acceptable input values (x-values). The range of a function is the set of all output values (y-values) and to find the domain and range of a given trigonometric function we must know the range and domain of the cos function, hence by applying the range and domain of trigonometric functions we can solve the given function.
Complete step-by-step answer:
Let us write the given function:
Let,
\[f\left( x \right) = \cos \left( {{e^x}} \right)\]
or \[y = \cos \left( {{e^x}} \right)\]
We need to make x the subject of \[y = \cos \left( {{e^x}} \right)\]
\[{\cos ^{ - 1}}\left( y \right) = {\cos ^{ - 1}}\left( {\cos \left( {{e^x}} \right)} \right)\]
\[ \Rightarrow \]\[{\cos ^{ - 1}}\left( y \right) = {e^x}\]
Taking natural logs on both sides as:
\[\ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right) = x\ln \left( e \right)\]
Now dividing by \[\ln e\]
\[\dfrac{{\ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right)}}{{\ln e}} = \dfrac{{x\ln \left( e \right)}}{{\ln e}}\]
\[ \Rightarrow \]\[\dfrac{{\ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right)}}{{\ln e}} = x\]
We know that \[\ln e\] = 1 (logarithm of the base is always 1)
Hence, we get:
\[x = \ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right)\]
\[ \Rightarrow \]\[{f^{ - 1}}\left( x \right) = \ln \left( {{{\cos }^{ - 1}}\left( x \right)} \right)\]
\[y = \ln \left( {{{\cos }^{ - 1}}\left( x \right)} \right)\]
We know that,
\[{\cos ^{ - 1}}\left( x \right) \geqslant 0\]
\[ \Rightarrow \]\[ - 1 \leqslant x \leqslant 1\]
Hence,
Domain is: \[\left\{ {x \in R: - 1 \leqslant x \leqslant 1} \right\}\]and
Range:
Maximum value of \[{\cos ^{ - 1}}\left( x \right) = \pi \], when x = -1
\[ \Rightarrow \]\[\ln \pi \]
Minimum value of \[\ln {\cos ^{ - 1}}\left( x \right) \to - \infty \], when \[x \to 1\]
\[ \Rightarrow \]\[\left\{ {x \in R: - \infty \leqslant y \leqslant \ln \pi } \right\}\]
Note: The domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the x-axis. They may also have been called the input and output of the function. The domain of a function f(x) is the set of all values for which the function is defined, and the range of the function is the set of all values that f takes.
Complete step-by-step answer:
Let us write the given function:
Let,
\[f\left( x \right) = \cos \left( {{e^x}} \right)\]
or \[y = \cos \left( {{e^x}} \right)\]
We need to make x the subject of \[y = \cos \left( {{e^x}} \right)\]
\[{\cos ^{ - 1}}\left( y \right) = {\cos ^{ - 1}}\left( {\cos \left( {{e^x}} \right)} \right)\]
\[ \Rightarrow \]\[{\cos ^{ - 1}}\left( y \right) = {e^x}\]
Taking natural logs on both sides as:
\[\ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right) = x\ln \left( e \right)\]
Now dividing by \[\ln e\]
\[\dfrac{{\ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right)}}{{\ln e}} = \dfrac{{x\ln \left( e \right)}}{{\ln e}}\]
\[ \Rightarrow \]\[\dfrac{{\ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right)}}{{\ln e}} = x\]
We know that \[\ln e\] = 1 (logarithm of the base is always 1)
Hence, we get:
\[x = \ln \left( {{{\cos }^{ - 1}}\left( y \right)} \right)\]
\[ \Rightarrow \]\[{f^{ - 1}}\left( x \right) = \ln \left( {{{\cos }^{ - 1}}\left( x \right)} \right)\]
\[y = \ln \left( {{{\cos }^{ - 1}}\left( x \right)} \right)\]
We know that,
\[{\cos ^{ - 1}}\left( x \right) \geqslant 0\]
\[ \Rightarrow \]\[ - 1 \leqslant x \leqslant 1\]
Hence,
Domain is: \[\left\{ {x \in R: - 1 \leqslant x \leqslant 1} \right\}\]and
Range:
Maximum value of \[{\cos ^{ - 1}}\left( x \right) = \pi \], when x = -1
\[ \Rightarrow \]\[\ln \pi \]
Minimum value of \[\ln {\cos ^{ - 1}}\left( x \right) \to - \infty \], when \[x \to 1\]
\[ \Rightarrow \]\[\left\{ {x \in R: - \infty \leqslant y \leqslant \ln \pi } \right\}\]
Note: The domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the x-axis. They may also have been called the input and output of the function. The domain of a function f(x) is the set of all values for which the function is defined, and the range of the function is the set of all values that f takes.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

