
Find the domain and range of \[f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right)\] where$\left[ . \right]$ denotes greater integer function.
Answer
582.3k+ views
Hint- To find the domain, first find the intersection of the values for which the given function will exist .Choose the positive value as x here is the greater integer function.
Complete step-by-step answer:
Given \[f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right)\]
Here,since ${\sin ^{ - 1}}\left( {\log \left[ x \right]} \right)$ is defined if and only if $\left[ x \right]$ >0 and $ - 1$ ≤$\log \left[ x \right] \leqslant 1$$ \Rightarrow x \in \left[ {1,1} \right)$-- (i) {on solving the inequality }
And $\log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right)$ is defined if and only if $ - 1 \leqslant \left[ x \right] \leqslant 1$ and${\sin ^{ - 1}}\left[ x \right] > 0$ $ \Rightarrow \left[ x \right] = 1$----(ii)
Now,(i)∩(ii) →$x \in \left[ {1,2} \right)$ .This is the domain of the function.Now f(x) is defined only if [x]=1 only.Then range =\[{\sin ^{ - 1}}\left( {\log \left[ 1 \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ 1 \right]} \right)\]=${\sin ^{ - 1}}0 + \log \dfrac{\pi }{2}$ $ = \log \dfrac{\pi }{2}$
So the domain is $\left[ {1,2} \right)$ and range is $\log \dfrac{\pi }{2}$ .
Note: Here, the students may mistake the domain as $\left( {1,2} \right)$ or $\left[ {1,2} \right]$ but this is wrong as it changes the meaning here the domain starts with closed interval denoted by[ and end with open interval denoted by ).
Complete step-by-step answer:
Given \[f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right)\]
Here,since ${\sin ^{ - 1}}\left( {\log \left[ x \right]} \right)$ is defined if and only if $\left[ x \right]$ >0 and $ - 1$ ≤$\log \left[ x \right] \leqslant 1$$ \Rightarrow x \in \left[ {1,1} \right)$-- (i) {on solving the inequality }
And $\log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right)$ is defined if and only if $ - 1 \leqslant \left[ x \right] \leqslant 1$ and${\sin ^{ - 1}}\left[ x \right] > 0$ $ \Rightarrow \left[ x \right] = 1$----(ii)
Now,(i)∩(ii) →$x \in \left[ {1,2} \right)$ .This is the domain of the function.Now f(x) is defined only if [x]=1 only.Then range =\[{\sin ^{ - 1}}\left( {\log \left[ 1 \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ 1 \right]} \right)\]=${\sin ^{ - 1}}0 + \log \dfrac{\pi }{2}$ $ = \log \dfrac{\pi }{2}$
So the domain is $\left[ {1,2} \right)$ and range is $\log \dfrac{\pi }{2}$ .
Note: Here, the students may mistake the domain as $\left( {1,2} \right)$ or $\left[ {1,2} \right]$ but this is wrong as it changes the meaning here the domain starts with closed interval denoted by[ and end with open interval denoted by ).
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

