
How do you find the distance between two parallel lines in 3-dimensional space?
Answer
461.7k+ views
Hint: In the above question, we are given two parallel lines in a 3-dimensional space. We have to find the distance between those two given lines. Recall the formula of cross product of two vectors. The cross product of two vectors is itself a vector and is given by the formula \[\overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \widehat n\], where \[\widehat n\] is the unit vector in the perpendicular direction of both vectors. This formula will be useful in finding the required distance, let see how.
Complete step by step answer:
Given that, two parallel lines that lie in a 3-dimensional space. Let the two parallel lines be \[{l_1}\] and \[{l_2}\]. Let the equations of the two parallel lines be,
\[{l_1} \Rightarrow \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow b \]
And
\[{l_2} \Rightarrow \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow b \]
Where \[\overrightarrow {{a_1}} \] and \[\overrightarrow {{a_2}} \] are points on \[{l_1}\] and \[{l_2}\] and \[\overrightarrow b \] is the line parallel to both \[{l_1}\] and \[{l_2}\] .
A diagram of both the lines is shown above where the distance between \[{l_1}\] and \[{l_2}\] is PT. Consider the vectors \[\overrightarrow {ST} \] and \[\overrightarrow b \] , their cross product can be written using the formula,
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \,\widehat n\]
As,
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {\overrightarrow {ST} } \right|\sin \theta \cdot \widehat n\] ...(1)
Also the distance ST can be written as,
\[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] ...(2)
Now from the diagram, we have
\[ \Rightarrow \sin \theta = \left| {\dfrac{{PT}}{{ST}}} \right|\]
That gives,
\[ \Rightarrow \left| {ST} \right|\sin \theta = \left| {PT} \right|\]
Multiplying both sides by \[\left| {\overrightarrow b } \right| \cdot \widehat n\] , we get
\[ \Rightarrow \left| {\overrightarrow b } \right|\left| {ST} \right|\sin \theta \cdot \widehat n = \left| {\overrightarrow b } \right| \cdot \left| {PT} \right| \cdot \widehat n\]
Now, using the equation ...(1) we can write the above equation as
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \widehat n\]
Taking modulus of both sides,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \left| {\widehat n} \right|\]
Since \[\left| {\widehat n} \right| = 1\] that gives,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
Again, putting \[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] we get
\[ \Rightarrow \left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
\[ \therefore \left| {PT} \right| = \dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\]
That is the required distance between the two parallel lines \[{l_1}\] and \[{l_2}\].
Therefore, the distance between two parallel lines in a 3-dimensional space is given by \[\dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\].
Note: In three-dimensional geometry, skew lines are two lines that do not intersect and also are not parallel. As a result they do not lie in the same plane. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. While intersecting lines and parallel lines lie in the same plane i.e. are coplanar.
Complete step by step answer:
Given that, two parallel lines that lie in a 3-dimensional space. Let the two parallel lines be \[{l_1}\] and \[{l_2}\]. Let the equations of the two parallel lines be,
\[{l_1} \Rightarrow \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow b \]
And
\[{l_2} \Rightarrow \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow b \]
Where \[\overrightarrow {{a_1}} \] and \[\overrightarrow {{a_2}} \] are points on \[{l_1}\] and \[{l_2}\] and \[\overrightarrow b \] is the line parallel to both \[{l_1}\] and \[{l_2}\] .
A diagram of both the lines is shown above where the distance between \[{l_1}\] and \[{l_2}\] is PT. Consider the vectors \[\overrightarrow {ST} \] and \[\overrightarrow b \] , their cross product can be written using the formula,
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \,\widehat n\]
As,
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {\overrightarrow {ST} } \right|\sin \theta \cdot \widehat n\] ...(1)
Also the distance ST can be written as,
\[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] ...(2)
Now from the diagram, we have
\[ \Rightarrow \sin \theta = \left| {\dfrac{{PT}}{{ST}}} \right|\]
That gives,
\[ \Rightarrow \left| {ST} \right|\sin \theta = \left| {PT} \right|\]
Multiplying both sides by \[\left| {\overrightarrow b } \right| \cdot \widehat n\] , we get
\[ \Rightarrow \left| {\overrightarrow b } \right|\left| {ST} \right|\sin \theta \cdot \widehat n = \left| {\overrightarrow b } \right| \cdot \left| {PT} \right| \cdot \widehat n\]
Now, using the equation ...(1) we can write the above equation as
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \widehat n\]
Taking modulus of both sides,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \left| {\widehat n} \right|\]
Since \[\left| {\widehat n} \right| = 1\] that gives,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
Again, putting \[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] we get
\[ \Rightarrow \left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
\[ \therefore \left| {PT} \right| = \dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\]
That is the required distance between the two parallel lines \[{l_1}\] and \[{l_2}\].
Therefore, the distance between two parallel lines in a 3-dimensional space is given by \[\dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\].
Note: In three-dimensional geometry, skew lines are two lines that do not intersect and also are not parallel. As a result they do not lie in the same plane. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. While intersecting lines and parallel lines lie in the same plane i.e. are coplanar.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

