
Find the distance between the points $R\left( {a + b,\,a - b} \right)\,and\,\,S\left( {a - b,\, - a - b} \right)$.
Answer
571.2k+ views
Hint: Firstly we will convert the given points in the form of $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ . So,${x_1} = a + b,{y_1} = a - b$ and ${x_2} = a - b,{y_2} = - a - b$.Thereafter we will substitute the value of ${x_1},{y_1},{x_2},{y_2}$in the distance formula. By using distance formula $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Complete step by step solution:
$R\left( {a + b,\,a - b} \right)$
$S\left( {a - b,\, - a - b} \right)$
{$x_1$} = a + b & {$y_1$} = a - b
{$x_2$} = a - b & {$y_2$}= - a - b
Distance formula: $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ …(i)
Substitute the value of x, $x_2$, $y_1$ and $y_2$ in equation (i)
$RS = \sqrt {{{\left( {\left( {a - b} \right) - \left( {a + b} \right)} \right)}^2} + {{\left( {\left( { - a - b} \right) - \left( {a - b} \right)} \right)}^2}} $
$ = \sqrt {{{\left( {a - b - a - b} \right)}^2} + {{\left( { - a - b - a + b} \right)}^2}} $
$ = \sqrt {{{\left( { - 2b} \right)}^2} + {{\left( { - 2a} \right)}^2}} $
$ = \sqrt {4{b^2} + 4{a^2}} $
$ = 2\sqrt {{b^2} + {a^2}} $ ans.
Note: Students should solve the problem carefully and put the exact values of ${x_1},{y_1},{x_2},{y_2}$ in the distance formula.If you will make a mistake somewhere then you will get wrong answer.
Complete step by step solution:
$R\left( {a + b,\,a - b} \right)$
$S\left( {a - b,\, - a - b} \right)$
{$x_1$} = a + b & {$y_1$} = a - b
{$x_2$} = a - b & {$y_2$}= - a - b
Distance formula: $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ …(i)
Substitute the value of x, $x_2$, $y_1$ and $y_2$ in equation (i)
$RS = \sqrt {{{\left( {\left( {a - b} \right) - \left( {a + b} \right)} \right)}^2} + {{\left( {\left( { - a - b} \right) - \left( {a - b} \right)} \right)}^2}} $
$ = \sqrt {{{\left( {a - b - a - b} \right)}^2} + {{\left( { - a - b - a + b} \right)}^2}} $
$ = \sqrt {{{\left( { - 2b} \right)}^2} + {{\left( { - 2a} \right)}^2}} $
$ = \sqrt {4{b^2} + 4{a^2}} $
$ = 2\sqrt {{b^2} + {a^2}} $ ans.
Note: Students should solve the problem carefully and put the exact values of ${x_1},{y_1},{x_2},{y_2}$ in the distance formula.If you will make a mistake somewhere then you will get wrong answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

